Forecasting Day-ahead Electricity Prices with A SARIMAX Model

Catherine McHugh, S. Coleman, D. Kerr, Daniel McGlynn
{"title":"Forecasting Day-ahead Electricity Prices with A SARIMAX Model","authors":"Catherine McHugh, S. Coleman, D. Kerr, Daniel McGlynn","doi":"10.1109/SSCI44817.2019.9002930","DOIUrl":null,"url":null,"abstract":"Electricity prices display nonlinear behaviour making it difficult to forecast prices in the market. In addition, various external factors influence electricity prices therefore predicting the day-ahead electricity price is subject to other factors fluctuating. Time-series models learn to follow past market trends and then use historical information as training input to predict future output. This paper focusses on understanding and interpreting statistical approaches for electricity price forecasting and explains these techniques through time-series application with real energy data. The model considered here is a Seasonal AutoRegressive Integrated Moving Average model with eXogenous variables (SARIMAX) as electricity prices follow a seasonal pattern controlled by various external factors. By applying algorithm rules for differencing to remove continuing trends, the data becomes stationary and parameters, 14 external factors, are chosen to predict day ahead electricity prices. In the presented experimental results, the Root Mean Square Error (RMSE) was reasonably low and the model accurately predicted electricity prices.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"38 1","pages":"1523-1529"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Electricity prices display nonlinear behaviour making it difficult to forecast prices in the market. In addition, various external factors influence electricity prices therefore predicting the day-ahead electricity price is subject to other factors fluctuating. Time-series models learn to follow past market trends and then use historical information as training input to predict future output. This paper focusses on understanding and interpreting statistical approaches for electricity price forecasting and explains these techniques through time-series application with real energy data. The model considered here is a Seasonal AutoRegressive Integrated Moving Average model with eXogenous variables (SARIMAX) as electricity prices follow a seasonal pattern controlled by various external factors. By applying algorithm rules for differencing to remove continuing trends, the data becomes stationary and parameters, 14 external factors, are chosen to predict day ahead electricity prices. In the presented experimental results, the Root Mean Square Error (RMSE) was reasonably low and the model accurately predicted electricity prices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用SARIMAX模型预测日前电价
电价表现出非线性行为,使得市场价格难以预测。此外,各种外部因素影响电价,因此预测前一天的电价会受到其他因素的波动。时间序列模型学习跟随过去的市场趋势,然后使用历史信息作为训练输入来预测未来的输出。本文的重点是理解和解释电价预测的统计方法,并通过实际能源数据的时间序列应用来解释这些技术。这里考虑的模型是一个带有外生变量的季节性自回归综合移动平均模型(SARIMAX),因为电价遵循由各种外部因素控制的季节性模式。通过应用差分算法规则来去除持续趋势,数据变得平稳,并选择14个外部因素参数来预测前一天的电价。实验结果表明,该模型的均方根误差(RMSE)较低,能较准确地预测电价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1