Impact of common observations in parallel distributed detection

Hao Chen, Tsang-Yi Wang
{"title":"Impact of common observations in parallel distributed detection","authors":"Hao Chen, Tsang-Yi Wang","doi":"10.1109/DSP-SPE.2015.7369534","DOIUrl":null,"url":null,"abstract":"Distributed detection with dependent observations is always a challenging problem. The problem of detection with shared information has many applications when sensors have overlapped measurements, e.g., when distributed detection is performed in a security system where sensors have overlapped coverages. For this shared information scenario, we investigate the distributed detection problem in parallel fusion networks. The design problem is how to best utilize the common information at both the local sensors and the fusion center to achieve best possible performance. We derive the necessary condition for the optimal sensor decision rules for all sensors. In addition, we investigate the system performance by comparing the optimal rules with suboptimal rules for distributed detection of a constant signal corrupted by Gaussian noise. The numerical results obtained by conducted examples confirm the optimality of the derived decision rules.","PeriodicalId":91992,"journal":{"name":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","volume":"8 1","pages":"95-100"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSP-SPE.2015.7369534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distributed detection with dependent observations is always a challenging problem. The problem of detection with shared information has many applications when sensors have overlapped measurements, e.g., when distributed detection is performed in a security system where sensors have overlapped coverages. For this shared information scenario, we investigate the distributed detection problem in parallel fusion networks. The design problem is how to best utilize the common information at both the local sensors and the fusion center to achieve best possible performance. We derive the necessary condition for the optimal sensor decision rules for all sensors. In addition, we investigate the system performance by comparing the optimal rules with suboptimal rules for distributed detection of a constant signal corrupted by Gaussian noise. The numerical results obtained by conducted examples confirm the optimality of the derived decision rules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并行分布式检测中常见观测值的影响
具有依赖观测值的分布式检测一直是一个具有挑战性的问题。当传感器具有重叠测量时,共享信息检测的问题有许多应用,例如,当在传感器具有重叠覆盖的安全系统中执行分布式检测时。针对这种共享信息场景,我们研究了并行融合网络中的分布式检测问题。设计问题是如何最好地利用本地传感器和融合中心的公共信息来实现最佳性能。导出了所有传感器的最优决策规则的必要条件。此外,我们通过比较最优规则和次最优规则来研究系统性能,用于分布检测受高斯噪声破坏的恒定信号。算例的数值结果证实了所推导决策规则的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ON THE BLOCK-SPARSITY OF MULTIPLE-MEASUREMENT VECTORS. A new method for determination of instantaneous pitch frequency from speech signals Wideband-FM demodulation for large wideband to narrowband conversion factors via multirate frequency transformations A practical strategy for spectral library partitioning and least-squares identification Question Review Model for Q&A systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1