{"title":"Distribution of porosity-preserving microquartz coatings in sandstones, Upper Jurassic Danish Central Graben","authors":"M. T. Nielsen, R. Weibel, J. Therkelsen, H. Friis","doi":"10.34194/GEUSB-201943-01-03","DOIUrl":null,"url":null,"abstract":"High porosity is a key factor for good reservoir sandstones for both hydrocarbon and geothermal energy exploitation. The porosity of sandstones generally decreases with increased burial depth due to compaction and cementation. However, some sandstones in the North Sea show higher porosity than expected for their burial depth, due to the presence of microquartz coatings (e.g. Aase et al. 1996; Hendry & Trewin 1995; Jahren & Ramm 2000; Maast et al. 2011). Siliceous sponge spicules have been documented to be an internal source of silica that promotes microquartz coatings (e.g. Hendry & Trewin 1995; Aase et al. 1996). Siliceous sponge spicules, the solid ‘skeleton’ of sponges, consist of opal-A and will dissolve when exposed to higher temperatures, thereby causing supersaturation of the formation water with respect to opal-CT and quartz, resulting in nucleation of numerous small (1–5 µm) quartz crystals (Williams et al. 1985; Hendry & Trewin 1995). To predict reservoir quality it is important to understand the distribution of porosity-preserving microquartz in clastic deposits, and yet this is still poorly understood. To address this, our study presents petrographical analyses of cored sandstone sections from wells of various depositional environments, including back-barrier, estuarine, shoreface and gravity flows, as well as various present-day burial depths across the Danish Central Graben.","PeriodicalId":49199,"journal":{"name":"Geological Survey of Denmark and Greenland Bulletin","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Survey of Denmark and Greenland Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34194/GEUSB-201943-01-03","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2
Abstract
High porosity is a key factor for good reservoir sandstones for both hydrocarbon and geothermal energy exploitation. The porosity of sandstones generally decreases with increased burial depth due to compaction and cementation. However, some sandstones in the North Sea show higher porosity than expected for their burial depth, due to the presence of microquartz coatings (e.g. Aase et al. 1996; Hendry & Trewin 1995; Jahren & Ramm 2000; Maast et al. 2011). Siliceous sponge spicules have been documented to be an internal source of silica that promotes microquartz coatings (e.g. Hendry & Trewin 1995; Aase et al. 1996). Siliceous sponge spicules, the solid ‘skeleton’ of sponges, consist of opal-A and will dissolve when exposed to higher temperatures, thereby causing supersaturation of the formation water with respect to opal-CT and quartz, resulting in nucleation of numerous small (1–5 µm) quartz crystals (Williams et al. 1985; Hendry & Trewin 1995). To predict reservoir quality it is important to understand the distribution of porosity-preserving microquartz in clastic deposits, and yet this is still poorly understood. To address this, our study presents petrographical analyses of cored sandstone sections from wells of various depositional environments, including back-barrier, estuarine, shoreface and gravity flows, as well as various present-day burial depths across the Danish Central Graben.
期刊介绍:
GEUS Bulletin publishes geoscience research papers, monographs and map descriptions with a focus on Denmark, Greenland and the wider North Atlantic and Arctic region. We welcome submissions that fit this remit. Specifically, we publish:
1.Short articles intended as rapid communications that are of immediate interest to the international geoscience community (these include new research, datasets, methods or reviews)
2.Regular-length articles that document new research or a review of a topic of interest
3.Monographs (single volume works, by arrangement with the editorial office)
4.Maps and descriptive texts (produced by GEUS for Greenland and Denmark, by arrangement with the editorial office)
GEUS Bulletin serves a broad geoscientific readership from research, industry, government agencies, NGOs and special interest groups.