{"title":"Inexact Proximal Operators for $\\ell_{p}$-Quasinorm Minimization","authors":"Cian O'Brien, Mark D. Plumbley","doi":"10.1109/ICASSP.2018.8462524","DOIUrl":null,"url":null,"abstract":"Proximal methods are an important tool in signal processing applications, where many problems can be characterized by the minimization of an expression involving a smooth fitting term and a convex regularization term - for example the classic $\\ell_{1}$ -Lasso. Such problems can be solved using the relevant proximal operator. Here we consider the use of proximal operators for the $\\ell_{p}$ -quasinorm where $0\\leq p\\leq 1$. Rather than seek a closed form solution, we develop an iterative algorithm using a Majorization-Minimization procedure which results in an inexact operator. Experiments on image denoising show that for $p\\leq 1$ the algorithm is effective in the high-noise scenario, outperforming the Lasso despite the inexactness of the proximal step.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"18 1","pages":"4724-4728"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Proximal methods are an important tool in signal processing applications, where many problems can be characterized by the minimization of an expression involving a smooth fitting term and a convex regularization term - for example the classic $\ell_{1}$ -Lasso. Such problems can be solved using the relevant proximal operator. Here we consider the use of proximal operators for the $\ell_{p}$ -quasinorm where $0\leq p\leq 1$. Rather than seek a closed form solution, we develop an iterative algorithm using a Majorization-Minimization procedure which results in an inexact operator. Experiments on image denoising show that for $p\leq 1$ the algorithm is effective in the high-noise scenario, outperforming the Lasso despite the inexactness of the proximal step.