Research of vehicle collision avoidance and self-adaptive control system based on fuzzy neural network

Cuimin Dong
{"title":"Research of vehicle collision avoidance and self-adaptive control system based on fuzzy neural network","authors":"Cuimin Dong","doi":"10.1109/ICECENG.2011.6057614","DOIUrl":null,"url":null,"abstract":"The paper proposes a new vehicle crash-avoiding method using the fuzzy reasoning system and neural net work. The method used neural net work to calculate collision risk instead of fuzzy inference. A vehicle crash-avoiding adaptive network fuzzy interference system model is proposed. The hybrid learning algorithm is proposed to improve rapidity of convergence. For some linear parameters such as consequent parameters, recursive least square algorithm is used to update it. For other nonlinear parameters such as premise parameters, steepest descent method are used to identity it. By comparing the simulation result and experiment data, it shows that the membership function and fuzzy rules for fuzzy control model is optimized effectively by using adaptive network fuzzy inference system. It has a good and self-adaptive performance for vehicle auto-control under the dangerous condition.","PeriodicalId":6336,"journal":{"name":"2011 International Conference on Electrical and Control Engineering","volume":"50 1","pages":"3109-3112"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Electrical and Control Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECENG.2011.6057614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper proposes a new vehicle crash-avoiding method using the fuzzy reasoning system and neural net work. The method used neural net work to calculate collision risk instead of fuzzy inference. A vehicle crash-avoiding adaptive network fuzzy interference system model is proposed. The hybrid learning algorithm is proposed to improve rapidity of convergence. For some linear parameters such as consequent parameters, recursive least square algorithm is used to update it. For other nonlinear parameters such as premise parameters, steepest descent method are used to identity it. By comparing the simulation result and experiment data, it shows that the membership function and fuzzy rules for fuzzy control model is optimized effectively by using adaptive network fuzzy inference system. It has a good and self-adaptive performance for vehicle auto-control under the dangerous condition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊神经网络的车辆避碰及自适应控制系统研究
本文提出了一种基于模糊推理系统和神经网络的汽车避碰新方法。该方法采用神经网络计算碰撞风险,代替模糊推理。提出了一种车辆避碰自适应网络模糊干扰系统模型。为了提高收敛速度,提出了混合学习算法。对于一些线性参数,如尾形参数,采用递推最小二乘算法进行更新。对于其他非线性参数,如前提参数,采用最陡下降法进行辨识。仿真结果与实验数据的对比表明,采用自适应网络模糊推理系统对模糊控制模型的隶属函数和模糊规则进行了有效的优化。它具有良好的自适应性能,适用于危险工况下的车辆自动控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aerodynamic and mechanical system modeling of a vertical axis wind turbine (VAWT) Application of Internet of Things for electric fire control A 28 GHz linear envelope tracking-power amplifier for LMDS applications Magnetic field finite element analysis and thrust characteristics calculation of a linear and rotary stepper motor An early warning system based on Motion History Image for blind spot of oversize vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1