Jiaohua Qin, Zhuo Zhou, Yun Tan, Xuyu Xiang, Zhibin He
{"title":"A Big Data Text Coverless Information Hiding Based on Topic Distribution and TF-IDF","authors":"Jiaohua Qin, Zhuo Zhou, Yun Tan, Xuyu Xiang, Zhibin He","doi":"10.4018/IJDCF.20210701.OA4","DOIUrl":null,"url":null,"abstract":"Coverless information hiding has become a hot topic in recent years. The existing steganalysis tools are invalidated due to coverless steganography without any modification to the carrier. However, for the text coverless has relatively low hiding capacity, this paper proposed a big data text coverless information hiding method based on LDA (latent Dirichlet allocation) topic distribution and keyword TF-IDF (term frequency-inverse document frequency). Firstly, the sender and receiver build codebook, including word segmentation, word frequency and TF-IDF features, LDA topic model clustering. The sender then shreds the secret information, converts it into keyword ID through the keywords-index table, and searches the text containing the secret information keywords. Secondly, the searched text is taken as the index tag according to the topic distribution and TF-IDF features. At the same time, random numbers are introduced to control the keyword order of secret information.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.20210701.OA4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
Coverless information hiding has become a hot topic in recent years. The existing steganalysis tools are invalidated due to coverless steganography without any modification to the carrier. However, for the text coverless has relatively low hiding capacity, this paper proposed a big data text coverless information hiding method based on LDA (latent Dirichlet allocation) topic distribution and keyword TF-IDF (term frequency-inverse document frequency). Firstly, the sender and receiver build codebook, including word segmentation, word frequency and TF-IDF features, LDA topic model clustering. The sender then shreds the secret information, converts it into keyword ID through the keywords-index table, and searches the text containing the secret information keywords. Secondly, the searched text is taken as the index tag according to the topic distribution and TF-IDF features. At the same time, random numbers are introduced to control the keyword order of secret information.