A Big Data Text Coverless Information Hiding Based on Topic Distribution and TF-IDF

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2021-07-01 DOI:10.4018/IJDCF.20210701.OA4
Jiaohua Qin, Zhuo Zhou, Yun Tan, Xuyu Xiang, Zhibin He
{"title":"A Big Data Text Coverless Information Hiding Based on Topic Distribution and TF-IDF","authors":"Jiaohua Qin, Zhuo Zhou, Yun Tan, Xuyu Xiang, Zhibin He","doi":"10.4018/IJDCF.20210701.OA4","DOIUrl":null,"url":null,"abstract":"Coverless information hiding has become a hot topic in recent years. The existing steganalysis tools are invalidated due to coverless steganography without any modification to the carrier. However, for the text coverless has relatively low hiding capacity, this paper proposed a big data text coverless information hiding method based on LDA (latent Dirichlet allocation) topic distribution and keyword TF-IDF (term frequency-inverse document frequency). Firstly, the sender and receiver build codebook, including word segmentation, word frequency and TF-IDF features, LDA topic model clustering. The sender then shreds the secret information, converts it into keyword ID through the keywords-index table, and searches the text containing the secret information keywords. Secondly, the searched text is taken as the index tag according to the topic distribution and TF-IDF features. At the same time, random numbers are introduced to control the keyword order of secret information.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJDCF.20210701.OA4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3

Abstract

Coverless information hiding has become a hot topic in recent years. The existing steganalysis tools are invalidated due to coverless steganography without any modification to the carrier. However, for the text coverless has relatively low hiding capacity, this paper proposed a big data text coverless information hiding method based on LDA (latent Dirichlet allocation) topic distribution and keyword TF-IDF (term frequency-inverse document frequency). Firstly, the sender and receiver build codebook, including word segmentation, word frequency and TF-IDF features, LDA topic model clustering. The sender then shreds the secret information, converts it into keyword ID through the keywords-index table, and searches the text containing the secret information keywords. Secondly, the searched text is taken as the index tag according to the topic distribution and TF-IDF features. At the same time, random numbers are introduced to control the keyword order of secret information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于主题分布和TF-IDF的大数据文本无覆盖信息隐藏
无盖信息隐藏是近年来研究的热点问题。现有的隐写分析工具由于没有对载体进行任何修改而采用无覆盖隐写而失效。然而,针对文本无覆盖隐藏能力较低的问题,本文提出了一种基于LDA (latent Dirichlet allocation)主题分布和关键词TF-IDF (term frequency-inverse document frequency)的大数据文本无覆盖信息隐藏方法。首先,发送方和接收方构建码本,包括分词、词频和TF-IDF特征、LDA主题模型聚类。发送方然后分解秘密信息,通过关键字索引表将其转换为关键字ID,并搜索包含秘密信息关键字的文本。其次,根据主题分布和TF-IDF特征,将检索到的文本作为索引标签。同时,引入随机数来控制保密信息的关键字顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks Examining the Behavior of Web Browsers Using Popular Forensic Tools Laboratory Dangerous Operation Behavior Detection System Based on Deep Learning Algorithm A Novel Watermarking Scheme for Audio Data Stored in Third Party Servers Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1