An approach for letter recognition system modeling based on prominent features of EEG

Shabnam Wahed, Monira Islam, Protik Chandra Biswas, Muhammad Masud Rana, Debarati Nath, Mohiudding Ahmad
{"title":"An approach for letter recognition system modeling based on prominent features of EEG","authors":"Shabnam Wahed, Monira Islam, Protik Chandra Biswas, Muhammad Masud Rana, Debarati Nath, Mohiudding Ahmad","doi":"10.1109/CEEE.2015.7428293","DOIUrl":null,"url":null,"abstract":"Letter recognition system is a novel approach in the field of communication with the external world using human brain activity. The system is based on temporal and spatial analysis to extract salient features of raw electroencephalogram (EEG) signal. Among various features amplitude, skewness, mean value of EEG signal are chosen which indicate the largest dispersion for different letters and help to evaluate letter recognition system. Then the raw EEG signal is analyzed using FFT and wavelet. Both wavelet transform and statistical analysis distinguish letters more precisely than FFT analysis. The overall recognition rate is 80% and 85.6% for statistical and wavelet analysis, respectively. It is shown that our proposed system is capable of recognizing English alphabet efficiently and reliably.","PeriodicalId":6490,"journal":{"name":"2015 International Conference on Electrical & Electronic Engineering (ICEEE)","volume":"27 1","pages":"5-8"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Electrical & Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEE.2015.7428293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Letter recognition system is a novel approach in the field of communication with the external world using human brain activity. The system is based on temporal and spatial analysis to extract salient features of raw electroencephalogram (EEG) signal. Among various features amplitude, skewness, mean value of EEG signal are chosen which indicate the largest dispersion for different letters and help to evaluate letter recognition system. Then the raw EEG signal is analyzed using FFT and wavelet. Both wavelet transform and statistical analysis distinguish letters more precisely than FFT analysis. The overall recognition rate is 80% and 85.6% for statistical and wavelet analysis, respectively. It is shown that our proposed system is capable of recognizing English alphabet efficiently and reliably.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图显著特征的字母识别系统建模方法
字母识别系统是利用人脑活动与外界进行交流的一种新方法。该系统基于时间和空间分析来提取原始脑电图信号的显著特征。在各种特征中,选取振幅、偏度、均值等特征来表示不同字母之间最大的离散度,有助于评价字母识别系统。然后利用FFT和小波对原始脑电信号进行分析。小波变换和统计分析都比FFT分析更精确地区分字母。统计和小波分析的总体识别率分别为80%和85.6%。实验表明,该系统能够高效、可靠地识别英语字母。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability enhancement of a grid connected wind farm by using STATCOM Comprehensive modeling and analysis of Variable Speed Wind Turbine using Permanent Magnet Synchronous Generator A cross-correlation based signal processing approach to determine number and distance of objects in the sea using CHIRP signal Recognition of reading activity from the saccadic samples of electrooculography data Power system cascading failure path searching under multiple failures based on probability estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1