Application of adaptive improved DE algorithm based on multi-angle search rotation crossover strategy in multi-circuit testing optimization

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Intelligent Systems Pub Date : 2023-01-01 DOI:10.1515/jisys-2022-0269
Wenchang Wu
{"title":"Application of adaptive improved DE algorithm based on multi-angle search rotation crossover strategy in multi-circuit testing optimization","authors":"Wenchang Wu","doi":"10.1515/jisys-2022-0269","DOIUrl":null,"url":null,"abstract":"Abstract This study based on the standard differential evolution (DE) algorithm was carried out to address the issues of control parameter imprinting, mutation process, and crossover process in the standard DE algorithm as well as the issue of multidimensional circuit testing optimization. A rotation control vector was introduced to expand the search range in the poor strategy to the circumference range of the individual and the parent target individual, and a rotation crossover operator and a binomial poor operator were combined. Finally, an improved adaptive DE algorithm based on a multi-angle search rotation crossover strategy was obtained. The research will improve the DE algorithm to optimize the testing of multidimensional circuits. It can be noted that the improved average precision value is 0.9919 when comparing the precision recall curves of the DE algorithm before and after the change, demonstrating a significant improvement in accuracy and stability. The fitness difference of the 30-dimensional problem is discovered to be between 0.25 × 103 and 0.5 × 103 by comparing the box graphs of the 30-dimensional problem with that of the 50-dimensional problem. On the 50-dimensional problem, when calculating the F4–F10 function, the fitness difference of the improved DE algorithm is 0.2 × 104–0.4 × 104. In summary, the improved DE algorithm proposed in this study compensates for the shortcomings of traditional algorithms in complex problem calculations and has also achieved significant optimization results in multidimensional circuit testing.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"11 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This study based on the standard differential evolution (DE) algorithm was carried out to address the issues of control parameter imprinting, mutation process, and crossover process in the standard DE algorithm as well as the issue of multidimensional circuit testing optimization. A rotation control vector was introduced to expand the search range in the poor strategy to the circumference range of the individual and the parent target individual, and a rotation crossover operator and a binomial poor operator were combined. Finally, an improved adaptive DE algorithm based on a multi-angle search rotation crossover strategy was obtained. The research will improve the DE algorithm to optimize the testing of multidimensional circuits. It can be noted that the improved average precision value is 0.9919 when comparing the precision recall curves of the DE algorithm before and after the change, demonstrating a significant improvement in accuracy and stability. The fitness difference of the 30-dimensional problem is discovered to be between 0.25 × 103 and 0.5 × 103 by comparing the box graphs of the 30-dimensional problem with that of the 50-dimensional problem. On the 50-dimensional problem, when calculating the F4–F10 function, the fitness difference of the improved DE algorithm is 0.2 × 104–0.4 × 104. In summary, the improved DE algorithm proposed in this study compensates for the shortcomings of traditional algorithms in complex problem calculations and has also achieved significant optimization results in multidimensional circuit testing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多角度搜索旋转交叉策略的自适应改进DE算法在多电路测试优化中的应用
摘要本研究基于标准差分进化(DE)算法,针对标准差分进化算法中的控制参数印记、突变过程、交叉过程以及多维电路测试优化问题进行研究。引入旋转控制向量将穷策略的搜索范围扩展到个体和母目标个体的周长范围,并结合旋转交叉算子和二项式穷算子。最后,给出了一种基于多角度搜索旋转交叉策略的改进自适应DE算法。该研究将改进DE算法以优化多维电路的测试。可以注意到,对比修改前后DE算法的查准率召回曲线,改进后的平均查准率为0.9919,准确率和稳定性都有了显著提高。通过对比30维问题的盒图和50维问题的盒图,发现30维问题的适应度差在0.25 × 103和0.5 × 103之间。在50维问题上,计算F4-F10函数时,改进DE算法的适应度差为0.2 × 104 - 0.4 × 104。综上所述,本文提出的改进DE算法弥补了传统算法在复杂问题计算中的不足,在多维电路测试中也取得了显著的优化效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
期刊最新文献
A study on predicting crime rates through machine learning and data mining using text A multiorder feature tracking and explanation strategy for explainable deep learning Intelligent control system for industrial robots based on multi-source data fusion Reinforcement learning with Gaussian process regression using variational free energy A novel distance vector hop localization method for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1