Preprocessing of tomato images captured by smartphone cameras using color correction and V-channel Otsu segmentation for tomato maturity clustering

Y. A. Sari, Sigit Adinugroho
{"title":"Preprocessing of tomato images captured by smartphone cameras using color correction and V-channel Otsu segmentation for tomato maturity clustering","authors":"Y. A. Sari, Sigit Adinugroho","doi":"10.1109/ICEEE2.2018.8391370","DOIUrl":null,"url":null,"abstract":"Preprocessing stage is an essential part in image processing or image recognition. Image taken by smartphone cameras may have inconsistent color that leads to inconsistent intensities, although they are captured in the same position and lighting condition. Apart from color inconsistency, there is a probability that smartphone camera produces blurry images. In order to solve those problems, this paper proposes a new framework to preprocessing image using combination of Linear Regression algorithm and V-Channel Otsu segmentation. Color correction and V-Otsu segmentation yield better segmentation and achieve good results after being evaluated using 6-means clustering. There are four types of smartphone devices tested to capture all tomato images. Since not all devices produce clear images, to test blurred image we use the variance of Laplacian. Based on experiment, Samsung Galaxy Ace produces the most blurred images. Preprocessing applied in blurred images using combination of Linear Regression and V-Channel Otsu segmentation (LR-V-Otsu) yield MSE up to 1.033. This result concludes that the algorithm is robust for blurred image.","PeriodicalId":6482,"journal":{"name":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","volume":"4 1","pages":"399-403"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Electrical and Electronic Engineering (ICEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE2.2018.8391370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Preprocessing stage is an essential part in image processing or image recognition. Image taken by smartphone cameras may have inconsistent color that leads to inconsistent intensities, although they are captured in the same position and lighting condition. Apart from color inconsistency, there is a probability that smartphone camera produces blurry images. In order to solve those problems, this paper proposes a new framework to preprocessing image using combination of Linear Regression algorithm and V-Channel Otsu segmentation. Color correction and V-Otsu segmentation yield better segmentation and achieve good results after being evaluated using 6-means clustering. There are four types of smartphone devices tested to capture all tomato images. Since not all devices produce clear images, to test blurred image we use the variance of Laplacian. Based on experiment, Samsung Galaxy Ace produces the most blurred images. Preprocessing applied in blurred images using combination of Linear Regression and V-Channel Otsu segmentation (LR-V-Otsu) yield MSE up to 1.033. This result concludes that the algorithm is robust for blurred image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用颜色校正和v通道Otsu分割对智能手机相机拍摄的番茄图像进行预处理,用于番茄成熟度聚类
预处理阶段是图像处理或图像识别的重要环节。尽管在相同的位置和照明条件下拍摄,但智能手机相机拍摄的图像可能会有不一致的颜色,从而导致不一致的强度。除了颜色不一致之外,智能手机相机可能会产生模糊的图像。为了解决这些问题,本文提出了一种将线性回归算法与V-Channel Otsu分割相结合的图像预处理框架。颜色校正和V-Otsu分割在6均值聚类评价后,分割效果更好,效果也很好。有四种类型的智能手机设备经过测试,可以捕捉所有番茄的图像。由于不是所有的设备都能产生清晰的图像,因此我们使用拉普拉斯方差来测试模糊图像。根据实验,三星Galaxy Ace产生的图像模糊程度最高。采用线性回归和V-Channel Otsu分割(LR-V-Otsu)相结合的方法对模糊图像进行预处理,MSE可达1.033。结果表明,该算法对模糊图像具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Protection coordination assessment and improvement of electrical network of an industrial complex in connection to power grid: An experience report Grasshopper optimization algorithm for automatic voltage regulator system Parameter optimization of power system stabilizer via Salp Swarm algorithm Optimization of out-of-band impedance environment for linearity improvements of microwave power transistors Distribution network fault section identification and fault location using artificial neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1