Concepts of Molecular Plant Breeding and Genome Editing

{"title":"Concepts of Molecular Plant Breeding and Genome Editing","authors":"","doi":"10.4018/978-1-7998-4312-2.ch001","DOIUrl":null,"url":null,"abstract":"Traditional plant breeding depends on spontaneous and induced mutations available in the crop plants. Such mutations are rare and occur randomly. By contrast, molecular breeding and genome editing are advanced breeding techniques that can enhance the selection process and produce precisely targeted modifications in any crop. Identification of molecular markers, based on SSRs and SNPs, and the availability of high-throughput (HTP) genotyping platforms have accelerated the process of generating dense genetic linkage maps and thereby enhanced application of marker-assisted breeding for crop improvement. Advanced molecular biology techniques that facilitate precise, efficient, and targeted modifications at genomic loci are termed as “genome editing.” The genome editing tools include “zinc-finger nucleases (ZNFs),” “transcription activator-like effector nucleases (TALENs),” oligonucleotide-directed mutagenesis (ODM), and “clustered regularly interspersed short palindromic repeats (CRISPER/Cas) system,” which can be used for targeted gene editing. Concepts of molecular plant breeding and genome editing systems are presented in this chapter.","PeriodicalId":7235,"journal":{"name":"Advances in Environmental Engineering and Green Technologies","volume":"89 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Environmental Engineering and Green Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-4312-2.ch001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional plant breeding depends on spontaneous and induced mutations available in the crop plants. Such mutations are rare and occur randomly. By contrast, molecular breeding and genome editing are advanced breeding techniques that can enhance the selection process and produce precisely targeted modifications in any crop. Identification of molecular markers, based on SSRs and SNPs, and the availability of high-throughput (HTP) genotyping platforms have accelerated the process of generating dense genetic linkage maps and thereby enhanced application of marker-assisted breeding for crop improvement. Advanced molecular biology techniques that facilitate precise, efficient, and targeted modifications at genomic loci are termed as “genome editing.” The genome editing tools include “zinc-finger nucleases (ZNFs),” “transcription activator-like effector nucleases (TALENs),” oligonucleotide-directed mutagenesis (ODM), and “clustered regularly interspersed short palindromic repeats (CRISPER/Cas) system,” which can be used for targeted gene editing. Concepts of molecular plant breeding and genome editing systems are presented in this chapter.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子植物育种与基因组编辑的概念
传统的植物育种依赖于作物植物的自发和诱导突变。这种突变是罕见的,是随机发生的。相比之下,分子育种和基因组编辑是先进的育种技术,可以加强选择过程,并在任何作物中产生精确的靶向修饰。基于ssr和snp的分子标记鉴定以及高通量(HTP)基因分型平台的可用性加速了生成密集遗传连锁图谱的过程,从而增强了标记辅助育种在作物改良中的应用。促进精确、高效和有针对性的基因组位点修改的先进分子生物学技术被称为“基因组编辑”。基因组编辑工具包括“锌指核酸酶(ZNFs)”、“转录激活因子样效应核酸酶(TALENs)”、寡核苷酸定向突变(ODM)和“聚集规律穿插短回复性重复序列(CRISPER/Cas)系统”,可用于靶向基因编辑。本章介绍了分子植物育种和基因组编辑系统的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Global Industrial Impacts of Heavy Metal Pollution in Sub-Saharan Africa Handbook of Research on Building Greener Economics and Adopting Digital Tools in the Era of Climate Change Geoscientific Investigations From the Indian Antarctic Program Handbook of Research on Green Technologies for Sustainable Management of Agricultural Resources Urban Sustainability and Energy Management of Cities for Improved Health and Well-Being
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1