Estimating Human Poses Using Deep Learning Models

Fırgat Muradli, Serap Cakar, Feyza Cerezci, Guluzar Cit
{"title":"Estimating Human Poses Using Deep Learning Models","authors":"Fırgat Muradli, Serap Cakar, Feyza Cerezci, Guluzar Cit","doi":"10.16984/saufenbilder.1311198","DOIUrl":null,"url":null,"abstract":"Over the past decade, extensive research has focused on the extraction of 3D human poses from images. The existing datasets must effectively address common challenges related to pose estimation. These datasets serve as valuable resources for evaluating, informing, and comparing different models. Deep learning models have gained widespread adoption and have demonstrated impressive performance across various domains of research and engineering. In this study, we employ these models, leveraging the open-source libraries OpenCV and Keras. To enhance the diversity and complexity of the training and testing process, we utilize the MPII Human Pose dataset. Specifically, we train and test the ResNet50 and VGG16 models using this dataset, resulting in significant improvements. The model's performance is evaluated based on the validation rate of the dataset and the accuracy of our model was 88.8 percent for VGG16 and 67 percent for ResNet50.","PeriodicalId":21468,"journal":{"name":"Sakarya University Journal of Science","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16984/saufenbilder.1311198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past decade, extensive research has focused on the extraction of 3D human poses from images. The existing datasets must effectively address common challenges related to pose estimation. These datasets serve as valuable resources for evaluating, informing, and comparing different models. Deep learning models have gained widespread adoption and have demonstrated impressive performance across various domains of research and engineering. In this study, we employ these models, leveraging the open-source libraries OpenCV and Keras. To enhance the diversity and complexity of the training and testing process, we utilize the MPII Human Pose dataset. Specifically, we train and test the ResNet50 and VGG16 models using this dataset, resulting in significant improvements. The model's performance is evaluated based on the validation rate of the dataset and the accuracy of our model was 88.8 percent for VGG16 and 67 percent for ResNet50.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习模型估计人体姿势
在过去的十年里,大量的研究集中在从图像中提取3D人体姿势上。现有的数据集必须有效地解决与姿态估计相关的共同挑战。这些数据集是评估、告知和比较不同模型的宝贵资源。深度学习模型已经被广泛采用,并在各个研究和工程领域展示了令人印象深刻的性能。在本研究中,我们利用这些模型,利用开源库OpenCV和Keras。为了增强训练和测试过程的多样性和复杂性,我们使用了MPII人体姿态数据集。具体来说,我们使用该数据集训练和测试了ResNet50和VGG16模型,得到了显著的改进。模型的性能是基于数据集的验证率来评估的,我们的模型在VGG16上的准确率为88.8%,在ResNet50上的准确率为67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Detailed Comparison of Two New Heuristic Algorithms Based on Gazelles Behavior Determination of Pesticide Residues in Water Using Extraction Method Developing an optimization model for minimizing solid waste collection costs Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites Evaluation of the Antigenotoxic Effect of Quercetin Against Antiepileptic Drug Genotoxicity by Comet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1