M. Lazuka, Thomas P. Parnell, Andreea Anghel, Haralambos Pozidis
{"title":"Search-based Methods for Multi-Cloud Configuration","authors":"M. Lazuka, Thomas P. Parnell, Andreea Anghel, Haralambos Pozidis","doi":"10.1109/CLOUD55607.2022.00067","DOIUrl":null,"url":null,"abstract":"Multi-cloud computing has become increasingly popular with enterprises looking to avoid vendor lock-in. While most cloud providers offer similar functionality, they may differ significantly in terms of performance and/or cost. A customer looking to benefit from such differences will naturally want to solve the multi-cloud configuration problem: given a workload, which cloud provider should be chosen and how should its nodes be configured in order to minimize runtime or cost? In this work, we consider possible solutions to this multi-cloud optimization problem. We develop and evaluate possible adaptations of state-of-the-art cloud configuration solutions to the multi-cloud domain. Furthermore, we identify an analogy between multi-cloud configuration and the selection-configuration problems that are commonly studied in the automated machine learning (AutoML) field. Inspired by this connection, we utilize popular optimizers from AutoML to solve multi-cloud configuration. Finally, we propose a new algorithm for solving multi-cloud configuration, CloudBandit. It treats the outer problem of cloud provider selection as a best-arm identification problem, in which each arm pull corresponds to running an arbitrary black-box optimizer on the inner problem of node configuration. Our extensive experiments indicate that (a) many state-of-the-art cloud configuration solutions can be adapted to multi-cloud, with best results obtained for adaptations which utilize the hierarchical structure of the multi-cloud configuration domain, (b) hierarchical methods from AutoML can be used for the multi-cloud configuration task and can outperform state-of-the-art cloud configuration solutions and (c) CloudBandit achieves competitive or lower regret relative to other tested algorithms, whilst also identifying configurations that have 65% lower median cost and 20% lower median runtime in production, compared to choosing a random provider and configuration.","PeriodicalId":54281,"journal":{"name":"IEEE Cloud Computing","volume":"29 1","pages":"438-448"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD55607.2022.00067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5
Abstract
Multi-cloud computing has become increasingly popular with enterprises looking to avoid vendor lock-in. While most cloud providers offer similar functionality, they may differ significantly in terms of performance and/or cost. A customer looking to benefit from such differences will naturally want to solve the multi-cloud configuration problem: given a workload, which cloud provider should be chosen and how should its nodes be configured in order to minimize runtime or cost? In this work, we consider possible solutions to this multi-cloud optimization problem. We develop and evaluate possible adaptations of state-of-the-art cloud configuration solutions to the multi-cloud domain. Furthermore, we identify an analogy between multi-cloud configuration and the selection-configuration problems that are commonly studied in the automated machine learning (AutoML) field. Inspired by this connection, we utilize popular optimizers from AutoML to solve multi-cloud configuration. Finally, we propose a new algorithm for solving multi-cloud configuration, CloudBandit. It treats the outer problem of cloud provider selection as a best-arm identification problem, in which each arm pull corresponds to running an arbitrary black-box optimizer on the inner problem of node configuration. Our extensive experiments indicate that (a) many state-of-the-art cloud configuration solutions can be adapted to multi-cloud, with best results obtained for adaptations which utilize the hierarchical structure of the multi-cloud configuration domain, (b) hierarchical methods from AutoML can be used for the multi-cloud configuration task and can outperform state-of-the-art cloud configuration solutions and (c) CloudBandit achieves competitive or lower regret relative to other tested algorithms, whilst also identifying configurations that have 65% lower median cost and 20% lower median runtime in production, compared to choosing a random provider and configuration.
期刊介绍:
Cessation.
IEEE Cloud Computing is committed to the timely publication of peer-reviewed articles that provide innovative research ideas, applications results, and case studies in all areas of cloud computing. Topics relating to novel theory, algorithms, performance analyses and applications of techniques are covered. More specifically: Cloud software, Cloud security, Trade-offs between privacy and utility of cloud, Cloud in the business environment, Cloud economics, Cloud governance, Migrating to the cloud, Cloud standards, Development tools, Backup and recovery, Interoperability, Applications management, Data analytics, Communications protocols, Mobile cloud, Private clouds, Liability issues for data loss on clouds, Data integration, Big data, Cloud education, Cloud skill sets, Cloud energy consumption, The architecture of cloud computing, Applications in commerce, education, and industry, Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a Service (SaaS), Business Process as a Service (BPaaS)