Automation of Carbonate Rock Thin Section Description Using Cognitive Image Recognition

H. Shebl, Mohamed Ali Al Tamimi, D. Boyd, H. Nehaid
{"title":"Automation of Carbonate Rock Thin Section Description Using Cognitive Image Recognition","authors":"H. Shebl, Mohamed Ali Al Tamimi, D. Boyd, H. Nehaid","doi":"10.2118/208149-ms","DOIUrl":null,"url":null,"abstract":"\n Simulation Engineers and Geomodelers rely on reservoir rock geological descriptions to help identify baffles, barriers and pathways to fluid flow critical to accurate reservoir performance predictions. Part of the reservoir modelling process involves Petrographers laboriously describing rock thin sections to interpret the depositional environment and diagenetic processes controlling rock quality, which along with pressure differences, controls fluid movement and influences ultimate oil recovery. Supervised Machine Learning and a rock fabric labelled data set was used to train a neural net to recognize Modified Durham classification reservoir rock thin section images and their individual components (fossils and pore types) plus predict rock quality. The image recognition program's accuracy was tested on an unseen thin section image database.","PeriodicalId":10959,"journal":{"name":"Day 3 Wed, November 17, 2021","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208149-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Simulation Engineers and Geomodelers rely on reservoir rock geological descriptions to help identify baffles, barriers and pathways to fluid flow critical to accurate reservoir performance predictions. Part of the reservoir modelling process involves Petrographers laboriously describing rock thin sections to interpret the depositional environment and diagenetic processes controlling rock quality, which along with pressure differences, controls fluid movement and influences ultimate oil recovery. Supervised Machine Learning and a rock fabric labelled data set was used to train a neural net to recognize Modified Durham classification reservoir rock thin section images and their individual components (fossils and pore types) plus predict rock quality. The image recognition program's accuracy was tested on an unseen thin section image database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于认知图像识别的碳酸盐岩薄片描述自动化
模拟工程师和地质建模师依靠油藏岩石地质描述来帮助识别挡板、屏障和流体流动路径,这对准确预测油藏性能至关重要。油藏建模过程的一部分包括岩石学家费力地描述岩石薄片,以解释控制岩石质量的沉积环境和成岩过程,岩石质量与压力差一起控制流体运动并影响最终的石油采收率。使用监督机器学习和岩石织物标记数据集来训练神经网络,以识别Modified Durham分类油藏岩石薄片图像及其单个成分(化石和孔隙类型),并预测岩石质量。在一个不可见的薄片图像数据库上测试了图像识别程序的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment of Unconventional Resources Opportunities in the Middle East Tethyan Petroleum System in a Transfer Learning Context Block 61 Drilling Fluids Optimization Journey High Resolution Reservoir Simulator Driven Custom Scripts as the Enabler for Solving Reservoir to Surface Network Coupling Challenges Pre-Engineered Standardized Turbomachinery Solutions: A Strategic Approach to Lean Project Management Using Active and Passive Near-Field Hydrophones to Image the Near-Surface in Ultra-Shallow Waters Offshore Abu Dhabi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1