H. Shebl, Mohamed Ali Al Tamimi, D. Boyd, H. Nehaid
{"title":"Automation of Carbonate Rock Thin Section Description Using Cognitive Image Recognition","authors":"H. Shebl, Mohamed Ali Al Tamimi, D. Boyd, H. Nehaid","doi":"10.2118/208149-ms","DOIUrl":null,"url":null,"abstract":"\n Simulation Engineers and Geomodelers rely on reservoir rock geological descriptions to help identify baffles, barriers and pathways to fluid flow critical to accurate reservoir performance predictions. Part of the reservoir modelling process involves Petrographers laboriously describing rock thin sections to interpret the depositional environment and diagenetic processes controlling rock quality, which along with pressure differences, controls fluid movement and influences ultimate oil recovery. Supervised Machine Learning and a rock fabric labelled data set was used to train a neural net to recognize Modified Durham classification reservoir rock thin section images and their individual components (fossils and pore types) plus predict rock quality. The image recognition program's accuracy was tested on an unseen thin section image database.","PeriodicalId":10959,"journal":{"name":"Day 3 Wed, November 17, 2021","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208149-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Simulation Engineers and Geomodelers rely on reservoir rock geological descriptions to help identify baffles, barriers and pathways to fluid flow critical to accurate reservoir performance predictions. Part of the reservoir modelling process involves Petrographers laboriously describing rock thin sections to interpret the depositional environment and diagenetic processes controlling rock quality, which along with pressure differences, controls fluid movement and influences ultimate oil recovery. Supervised Machine Learning and a rock fabric labelled data set was used to train a neural net to recognize Modified Durham classification reservoir rock thin section images and their individual components (fossils and pore types) plus predict rock quality. The image recognition program's accuracy was tested on an unseen thin section image database.