Long-Term Vibration Trend Prediction of Rotor System State Based on Support Vector Regression and Discrete Wavelet Decomposition

Hang Xie, G. Wen
{"title":"Long-Term Vibration Trend Prediction of Rotor System State Based on Support Vector Regression and Discrete Wavelet Decomposition","authors":"Hang Xie, G. Wen","doi":"10.1109/IWISA.2009.5072946","DOIUrl":null,"url":null,"abstract":"In this paper, an new method is proposed based on support vector regression (SVR) and discrete wavelet decomposition (DWD) for long-term rotor vibration trend forecasting. The feasibility of SVR in long-term vibration trend forecasting is also examined in this paper. And, the discrete wavelet decomposition is used to extract the trend components of vibration time series. Finally, the hybrid prediction model and algorithm of combining SVR and DWD is validated by a group of practical long-term vibration data measured from a flue gas turbine. The results show that the hybrid prediction model possesses more advantageous to forecast long-term state time series than directly using SVR model.","PeriodicalId":6327,"journal":{"name":"2009 International Workshop on Intelligent Systems and Applications","volume":"6 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2009.5072946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, an new method is proposed based on support vector regression (SVR) and discrete wavelet decomposition (DWD) for long-term rotor vibration trend forecasting. The feasibility of SVR in long-term vibration trend forecasting is also examined in this paper. And, the discrete wavelet decomposition is used to extract the trend components of vibration time series. Finally, the hybrid prediction model and algorithm of combining SVR and DWD is validated by a group of practical long-term vibration data measured from a flue gas turbine. The results show that the hybrid prediction model possesses more advantageous to forecast long-term state time series than directly using SVR model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量回归和离散小波分解的转子系统状态长期振动趋势预测
提出了一种基于支持向量回归(SVR)和离散小波分解(DWD)的转子长期振动趋势预测方法。本文还探讨了支持向量回归法在长期振动趋势预测中的可行性。并利用离散小波分解提取振动时间序列的趋势分量。最后,通过一组实际的烟机长期振动实测数据验证了SVR和DWD相结合的混合预测模型和算法。结果表明,混合预测模型比直接使用SVR模型更有利于长期状态时间序列的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Systems and Applications: Select Proceedings of ICISA 2022 Selecting Accurate Classifier Models for a MERS-CoV Dataset A Method of Same Frequency Interference Elimination Based on Adaptive Notch Filter Research on Work-in-Progress Control System of Integrating PI and SPC Study on A Novel Fuzzy PLL and Its Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1