A Query Expansion Benchmark on Social Media Information Retrieval: Which Methodology Performs Best and Aligns with Semantics?

Comput. Pub Date : 2023-06-10 DOI:10.3390/computers12060119
E. Stathopoulos, Anastasios I. Karageorgiadis, Alexandros Kokkalas, S. Diplaris, S. Vrochidis, Y. Kompatsiaris
{"title":"A Query Expansion Benchmark on Social Media Information Retrieval: Which Methodology Performs Best and Aligns with Semantics?","authors":"E. Stathopoulos, Anastasios I. Karageorgiadis, Alexandros Kokkalas, S. Diplaris, S. Vrochidis, Y. Kompatsiaris","doi":"10.3390/computers12060119","DOIUrl":null,"url":null,"abstract":"This paper presents a benchmarking survey on query expansion techniques for social media information retrieval, with a focus on comparing the performance of methods using semantic web technologies. The study evaluated query expansion techniques such as generative AI models and semantic matching algorithms and how they are integrated in a semantic framework. The evaluation was based on cosine similarity metrics, including the Discounted Cumulative Gain (DCG), Ideal Discounted Cumulative Gain (IDCG), and normalized Discounted Cumulative Gain (nDCG), as well as the Mean Average Precision (MAP). Additionally, the paper discusses the use of semantic web technologies as a component in a pipeline for building thematic knowledge graphs from retrieved social media data with extended ontologies integrated for the refugee crisis. The paper begins by introducing the importance of query expansion in information retrieval and the potential benefits of incorporating semantic web technologies. The study then presents the methodologies and outlines the specific procedures for each query expansion technique. The results of the evaluation are presented, as well as the rest semantic framework, and the best-performing technique was identified, which was the curie-001 generative AI model. Finally, the paper summarizes the main findings and suggests future research directions.","PeriodicalId":10526,"journal":{"name":"Comput.","volume":"9 1","pages":"119"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/computers12060119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a benchmarking survey on query expansion techniques for social media information retrieval, with a focus on comparing the performance of methods using semantic web technologies. The study evaluated query expansion techniques such as generative AI models and semantic matching algorithms and how they are integrated in a semantic framework. The evaluation was based on cosine similarity metrics, including the Discounted Cumulative Gain (DCG), Ideal Discounted Cumulative Gain (IDCG), and normalized Discounted Cumulative Gain (nDCG), as well as the Mean Average Precision (MAP). Additionally, the paper discusses the use of semantic web technologies as a component in a pipeline for building thematic knowledge graphs from retrieved social media data with extended ontologies integrated for the refugee crisis. The paper begins by introducing the importance of query expansion in information retrieval and the potential benefits of incorporating semantic web technologies. The study then presents the methodologies and outlines the specific procedures for each query expansion technique. The results of the evaluation are presented, as well as the rest semantic framework, and the best-performing technique was identified, which was the curie-001 generative AI model. Finally, the paper summarizes the main findings and suggests future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社交媒体信息检索的查询扩展基准:哪种方法性能最好且符合语义?
本文对社交媒体信息检索的查询扩展技术进行了基准调查,重点比较了使用语义web技术的方法的性能。该研究评估了查询扩展技术,如生成人工智能模型和语义匹配算法,以及如何将它们集成到语义框架中。评估基于余弦相似度指标,包括贴现累积增益(DCG)、理想贴现累积增益(IDCG)、归一化贴现累积增益(nDCG)以及平均平均精度(MAP)。此外,本文还讨论了使用语义网技术作为管道中的一个组件,用于从检索的社交媒体数据中构建专题知识图,并为难民危机集成了扩展本体。本文首先介绍了查询扩展在信息检索中的重要性以及结合语义web技术的潜在好处。然后介绍了方法并概述了每种查询扩展技术的具体步骤。给出了评估结果,以及其他语义框架,并确定了性能最佳的技术,即curie-001生成AI模型。最后,对本文的主要研究成果进行了总结,并对未来的研究方向提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A U-Net Architecture for Inpainting Lightstage Normal Maps Implementing Virtualization on Single-Board Computers: A Case Study on Edge Computing Electrocardiogram Signals Classification Using Deep-Learning-Based Incorporated Convolutional Neural Network and Long Short-Term Memory Framework The Mechanism of Resonant Amplification of One-Dimensional Detonation Propagating in a Non-Uniform Mixture Application of Immersive VR Serious Games in the Treatment of Schizophrenia Negative Symptoms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1