Graphical Computational Tool for Segmentation of Gray and White Matter Regions in Brain MRI Images

Sunayana Tirumalasetty, Vidwan Reddy Patlolla, Rakshith Tirumalasetty, Manish K. Arya, R. Agrawal, G. Hossain, A. Jothi, Ashwani K. Dubey, R. Challoo, Ayush Goyal
{"title":"Graphical Computational Tool for Segmentation of Gray and White Matter Regions in Brain MRI Images","authors":"Sunayana Tirumalasetty, Vidwan Reddy Patlolla, Rakshith Tirumalasetty, Manish K. Arya, R. Agrawal, G. Hossain, A. Jothi, Ashwani K. Dubey, R. Challoo, Ayush Goyal","doi":"10.1109/WISPNET.2018.8538587","DOIUrl":null,"url":null,"abstract":"There is a need for computational tools for processing medical patient data and extracting clinically relevant information from patient images for providing patient-specific personalized treatment. Tools have been and are actively being developed by software engineers and programmers in the field of bio-medical image processing for assisting doctors, scientists and researchers. This paper presents an independent stand-alone software application that is a graphical computational tool with a user interface for automatic segmentation of brain MRI images. The same software tool subsequently functions as a neurological disease prediction framework for detection of disease, dementia, impairment, injury, lesions, or tumors in brain MRI images. Brain MRI image segmentation techniques have become an important tool for neurologists to detect disease and cure patients in their early stages of the disease so detected. The tool presented in this paper facilitates the user to automatically segment the regions of brain MRI images using an algorithm called adapted fuzzy c-means (FCM). This methodology for segmentation is based on pixel classification technique, in conjunction with connected region analysis.","PeriodicalId":6858,"journal":{"name":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","volume":"1 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISPNET.2018.8538587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

There is a need for computational tools for processing medical patient data and extracting clinically relevant information from patient images for providing patient-specific personalized treatment. Tools have been and are actively being developed by software engineers and programmers in the field of bio-medical image processing for assisting doctors, scientists and researchers. This paper presents an independent stand-alone software application that is a graphical computational tool with a user interface for automatic segmentation of brain MRI images. The same software tool subsequently functions as a neurological disease prediction framework for detection of disease, dementia, impairment, injury, lesions, or tumors in brain MRI images. Brain MRI image segmentation techniques have become an important tool for neurologists to detect disease and cure patients in their early stages of the disease so detected. The tool presented in this paper facilitates the user to automatically segment the regions of brain MRI images using an algorithm called adapted fuzzy c-means (FCM). This methodology for segmentation is based on pixel classification technique, in conjunction with connected region analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脑MRI图像中灰质和白质区域分割的图形计算工具
需要计算工具来处理医疗患者数据并从患者图像中提取临床相关信息,以提供针对患者的个性化治疗。生物医学图像处理领域的软件工程师和程序员已经并正在积极开发工具,以协助医生、科学家和研究人员。本文提出了一个独立的独立软件应用程序,它是一个具有用户界面的图形计算工具,用于脑MRI图像的自动分割。同样的软件工具随后作为神经系统疾病预测框架,用于检测大脑MRI图像中的疾病、痴呆、损伤、损伤、病变或肿瘤。脑MRI图像分割技术已成为神经科医生发现疾病并在疾病早期治疗患者的重要工具。本文提出的工具便于用户使用一种称为自适应模糊c均值(FCM)的算法自动分割脑MRI图像的区域。这种分割方法是基于像素分类技术,结合连通区域分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Reinforcement Learning for the Capacitated Vehicle Routing Problem with Soft Time Window Integrated Interference Solutions Between 5G and Satellite Systems Modulation Recognition Method of MAPSK Signal Artificial Intelligence Routing Method in Wireless Sensor Network for Sewage Treatment Monitoring Electromagnetically Induced Transparency in a Coupled NV Spin-Mechanical Resonator System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1