{"title":"Pre-service mathematics teachers investigating the attributes of inscribed circles by technological and theoretical scaffolding","authors":"R. Segal, Moshe Stupel","doi":"10.29333/iejme/12803","DOIUrl":null,"url":null,"abstract":"The benefits of technological and theoretical scaffolding were observed when pre-service teachers aiming to teach upper elementary grades were given three learning-based geometrical inquiry tasks involving inscribed circles. They were asked to collaboratively examine the accompanying geometrical illustration and data for some new or interesting feature and then propose a hypothesis resulting from their observations and prove them.\nDue to the difficulty generally involved in proposing and proving geometrical hypotheses, two forms of scaffolding were provided: theoretical scaffolding based on revising previous learning or specific attributes of the given data and technological scaffolding in the form of specifically designed GeoGebra applets that allowed dynamic observation of the attributes of the geometrical shapes and the changes they underwent during modification.\nWe found that the two forms of scaffolding led to relatively pre-service teachers’ high levels of success. They exhibited high levels of interest and participation, were engaged in the tasks, and underwent high-quality learning processes. In follow-up interviews, they confirmed that the exercise improved their inquiry skills, and developed their pedagogical and technological knowledge.","PeriodicalId":29770,"journal":{"name":"International Electronic Journal of Mathematics Education","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29333/iejme/12803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
The benefits of technological and theoretical scaffolding were observed when pre-service teachers aiming to teach upper elementary grades were given three learning-based geometrical inquiry tasks involving inscribed circles. They were asked to collaboratively examine the accompanying geometrical illustration and data for some new or interesting feature and then propose a hypothesis resulting from their observations and prove them.
Due to the difficulty generally involved in proposing and proving geometrical hypotheses, two forms of scaffolding were provided: theoretical scaffolding based on revising previous learning or specific attributes of the given data and technological scaffolding in the form of specifically designed GeoGebra applets that allowed dynamic observation of the attributes of the geometrical shapes and the changes they underwent during modification.
We found that the two forms of scaffolding led to relatively pre-service teachers’ high levels of success. They exhibited high levels of interest and participation, were engaged in the tasks, and underwent high-quality learning processes. In follow-up interviews, they confirmed that the exercise improved their inquiry skills, and developed their pedagogical and technological knowledge.