3D teleimmersive activity classification based on application-system metadata

Aadhar Jain, A. Arefin, Raoul Rivas, Chien-Nan Chen, K. Nahrstedt
{"title":"3D teleimmersive activity classification based on application-system metadata","authors":"Aadhar Jain, A. Arefin, Raoul Rivas, Chien-Nan Chen, K. Nahrstedt","doi":"10.1145/2502081.2502194","DOIUrl":null,"url":null,"abstract":"Being able to detect and recognize human activities is essential for 3D collaborative applications for efficient quality of service provisioning and device management. A broad range of research has been devoted to analyze media data to identify human activity, which requires the knowledge of data format, application-specific coding technique and computationally expensive image analysis. In this paper, we propose a human activity detection technique based on application generated metadata and related system metadata. Our approach does not depend on specific data format or coding technique. We evaluate our algorithm with different cyber-physical setups, and show that we can achieve very high accuracy (above 97%) by using a good learning model.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Being able to detect and recognize human activities is essential for 3D collaborative applications for efficient quality of service provisioning and device management. A broad range of research has been devoted to analyze media data to identify human activity, which requires the knowledge of data format, application-specific coding technique and computationally expensive image analysis. In this paper, we propose a human activity detection technique based on application generated metadata and related system metadata. Our approach does not depend on specific data format or coding technique. We evaluate our algorithm with different cyber-physical setups, and show that we can achieve very high accuracy (above 97%) by using a good learning model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于应用系统元数据的三维远程沉浸式活动分类
能够检测和识别人类活动对于3D协作应用程序至关重要,以实现高效的服务提供和设备管理质量。广泛的研究致力于分析媒体数据以识别人类活动,这需要数据格式的知识,特定应用的编码技术和计算昂贵的图像分析。本文提出了一种基于应用生成元数据和相关系统元数据的人类活动检测技术。我们的方法不依赖于特定的数据格式或编码技术。我们用不同的网络物理设置评估了我们的算法,并表明通过使用良好的学习模型,我们可以达到非常高的准确率(97%以上)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Summary abstract for the 1st ACM international workshop on personal data meets distributed multimedia πLDA: document clustering with selective structural constraints Massive-scale multimedia semantic modeling OTMedia: the French TransMedia news observatory Orchestration: tv-like mixing grammars applied to video-communication for social groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1