A Hybrid Intrusion Detection System for IoT Applications with Constrained Resources

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2020-01-01 DOI:10.4018/ijdcf.2020010106
Chao Wu, Yuan’an Liu, Fan Wu, Feng Liu, Hui Lu, Wenhao Fan, B. Tang
{"title":"A Hybrid Intrusion Detection System for IoT Applications with Constrained Resources","authors":"Chao Wu, Yuan’an Liu, Fan Wu, Feng Liu, Hui Lu, Wenhao Fan, B. Tang","doi":"10.4018/ijdcf.2020010106","DOIUrl":null,"url":null,"abstract":"NetworksecurityandnetworkforensicstechnologiesfortheInternetofThings(IoT)needspecial considerationduetoresource-constraints.CybercrimesconductedinIoTfocusonnetworkinformation andenergy sources.Graph theory is adopted to analyze the IoTnetworkandahybrid Intrusion DetectionSystem(IDS)isproposed.ThehybridIDSconsistsofCentralizedandActiveMalicious NodeDetection(CAMD)andDistributedandPassiveEEA(EnergyExhaustionAttack)Resistance (DPER).CAMDisintegratedinthegeneticalgorithm-baseddatagatheringscheme.CAMDdetects maliciousnodesmanipulatedbycybercriminalsandprovidesdigitalevidenceforforensics.DPERis implementedinasetofcommunicationprotocolstoalleviatetheimpactofEEAattacks.Simulation experiments conducted on NS-3 platform showed the hybrid IDS proposed detected and traced maliciousnodespreciselywithoutcompromisingenergyefficiency.Besides, the impactofEEA attacksconductedbycybercriminalswaseffectivelyalleviated. KeywoRDS Cybercrime, Energy Efficiency, Genetic Algorithm, Graph Theory, Internet Of Things, Network Forensics","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":"58 1","pages":"109-130"},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.2020010106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6

Abstract

NetworksecurityandnetworkforensicstechnologiesfortheInternetofThings(IoT)needspecial considerationduetoresource-constraints.CybercrimesconductedinIoTfocusonnetworkinformation andenergy sources.Graph theory is adopted to analyze the IoTnetworkandahybrid Intrusion DetectionSystem(IDS)isproposed.ThehybridIDSconsistsofCentralizedandActiveMalicious NodeDetection(CAMD)andDistributedandPassiveEEA(EnergyExhaustionAttack)Resistance (DPER).CAMDisintegratedinthegeneticalgorithm-baseddatagatheringscheme.CAMDdetects maliciousnodesmanipulatedbycybercriminalsandprovidesdigitalevidenceforforensics.DPERis implementedinasetofcommunicationprotocolstoalleviatetheimpactofEEAattacks.Simulation experiments conducted on NS-3 platform showed the hybrid IDS proposed detected and traced maliciousnodespreciselywithoutcompromisingenergyefficiency.Besides, the impactofEEA attacksconductedbycybercriminalswaseffectivelyalleviated. KeywoRDS Cybercrime, Energy Efficiency, Genetic Algorithm, Graph Theory, Internet Of Things, Network Forensics
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
资源受限的物联网应用混合入侵检测系统
NetworksecurityandnetworkforensicstechnologiesfortheInternetofThings(IoT)needspecial considerationduetoresource-constraints。CybercrimesconductedinIoTfocusonnetworkinformation andenergy来源。Graph采用理论来分析IoTnetworkandahybrid intrusion_ DetectionSystem(IDS)isproposed。ThehybridIDSconsistsofCentralizedandActiveMalicious NodeDetection(CAMD)andDistributedandPassiveEEA(EnergyExhaustionAttack)Resistance (DPER).CAMDisintegratedinthegeneticalgorithm-baseddatagatheringscheme。CAMDdetects maliciousnodesmanipulatedbycybercriminalsandprovidesdigitalevidenceforforensics。DPERis implementedinasetofcommunicationprotocolstoalleviatetheimpactofEEAattacks。Simulation在ns -3平台上进行的实验显示了所提出的混合ids,并进行了检测和跟踪maliciousnodespreciselywithoutcompromisingenergyefficiency。Besides, the impactofEEA attacksconductedbycybercriminalswaseffectivelyalleviated。关键词:网络犯罪,能效,遗传算法,图论,物联网,网络取证
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning UAV Edge Caching Content Recommendation Algorithm Based on Graph Neural Network Task Offloading in Cloud-Edge Environments MD-S3C3 A Crime Scene Reconstruction for Digital Forensic Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1