Hyperspectral Image Classification With Online Structured Dictionary Learning

Saeideh Ghanbari Azar, S. Meshgini, T. Y. Rezaii, A. Farzamnia
{"title":"Hyperspectral Image Classification With Online Structured Dictionary Learning","authors":"Saeideh Ghanbari Azar, S. Meshgini, T. Y. Rezaii, A. Farzamnia","doi":"10.1109/ICCKE48569.2019.8964900","DOIUrl":null,"url":null,"abstract":"In this study, the spectral and spatial redundancies of hyperspectral images are used for designing a sparse representation-based classification approach. The spectral redundancy is used to define spectral blocks and they are used to adaptively recognize the distinctive bands. The most distinctive blocks are identified as active blocks in a block sparse representation approach. Then the sparse coefficients within each spatial group are imposed to share a common subspace. To achieve this hierarchical sparsity pattern a sparse coding algorithm is proposed. This sparse coding is done over a block-structured dictionary, which is learned from the image data using the online dictionary learning algorithm. The obtained sparse coefficients are then classified using a support vector machine classifier. This structured sparsity pattern alleviates the instability of the sparse coefficients. Experiments on two standard datasets namely, Indian Pines and Pavia University, verify the effectiveness of the proposed approach for the classification of hyperspectral images.","PeriodicalId":6685,"journal":{"name":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","volume":"19 1","pages":"276-281"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 9th International Conference on Computer and Knowledge Engineering (ICCKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCKE48569.2019.8964900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the spectral and spatial redundancies of hyperspectral images are used for designing a sparse representation-based classification approach. The spectral redundancy is used to define spectral blocks and they are used to adaptively recognize the distinctive bands. The most distinctive blocks are identified as active blocks in a block sparse representation approach. Then the sparse coefficients within each spatial group are imposed to share a common subspace. To achieve this hierarchical sparsity pattern a sparse coding algorithm is proposed. This sparse coding is done over a block-structured dictionary, which is learned from the image data using the online dictionary learning algorithm. The obtained sparse coefficients are then classified using a support vector machine classifier. This structured sparsity pattern alleviates the instability of the sparse coefficients. Experiments on two standard datasets namely, Indian Pines and Pavia University, verify the effectiveness of the proposed approach for the classification of hyperspectral images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于在线结构化字典学习的高光谱图像分类
在本研究中,利用高光谱图像的光谱和空间冗余来设计基于稀疏表示的分类方法。利用光谱冗余度定义光谱块,并利用光谱块自适应识别特征波段。在块稀疏表示方法中,最独特的块被识别为活动块。然后在每个空间群内施加稀疏系数,以共享一个公共子空间。为了实现这种分层稀疏模式,提出了一种稀疏编码算法。这种稀疏编码是在使用在线字典学习算法从图像数据中学习的块结构字典上完成的。然后使用支持向量机分类器对得到的稀疏系数进行分类。这种结构稀疏模式减轻了稀疏系数的不稳定性。在Indian Pines和Pavia University两个标准数据集上的实验验证了该方法对高光谱图像分类的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Parallel Jobs Scheduling Algorithm in The Cloud Computing Online QoS Multicast Routing in Multi-Channel Multi-Radio Wireless Mesh Networks using Network Coding Tasks Decomposition for Improvement of Genetic Network Programming Robust Real-time Magnetic-based Object Localization to Sensor’s Fault using Recurrent Neural Networks A Case Study for Presenting Bank Recommender Systems based on Bon Card Transaction Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1