A bimetallic-activated MnO2 self-assembly electrode with a dual heterojunction structure for high-performance rechargeable zinc-air batteries

Zhengyu Yin, Ruinan He, Huaibin Xue, Jing-Ming Chen, Yue Wang, Xiaoxiao Ye, Nengneng Xu, Jinli Qiao, Haitao Huang
{"title":"A bimetallic-activated MnO2 self-assembly electrode with a dual heterojunction structure for high-performance rechargeable zinc-air batteries","authors":"Zhengyu Yin, Ruinan He, Huaibin Xue, Jing-Ming Chen, Yue Wang, Xiaoxiao Ye, Nengneng Xu, Jinli Qiao, Haitao Huang","doi":"10.20517/energymater.2022.17","DOIUrl":null,"url":null,"abstract":"A major challenge in developing zinc-air batteries (ZABs) is to exploit suitable cathodes to efficiently accelerate the key electrocatalytic processes involved. Herein, a bifunctional oxygen catalytic self-supported MnO2-based electrode is designed that displays superior oxygen reduction and evolution reaction performance over noble metal electrodes with a total overpotential of 0.69 V. In addition, the as-synthesized NiCo2O4@MnO2/carbon nanotube (CNT)-Ni foam self-supported electrode can be directly used as an oxygen electrode without externally adding carbon or a binder and shows reasonable battery performance with a high peak power density of 226 mW cm-2 and a long-term charge-discharge cycling lifetime (5 mA for 160 h). As expected, the rapid oxygen catalytic intrinsic kinetics and high battery performance of the NiCo2O4@MnO2/CNTs-Ni foam electrode originates from the unique three-dimensional hierarchical structure, which effectively promotes mass transfer. Furthermore, the CNTs combined with Ni foam form a unique “meridian” conductive structure that enables rapid electron conduction. Finally, the abundant Mn3+ active sites activated by bimetallic ions shorten the oxygen catalytic reaction distance between the active sites and reactant and reduce the surface activity of MnO2 for the O, OH, and OOH species. This work not only offers a high-performance bifunctional self-supported electrode for ZABs but also opens new insights into the activation of Mn-based electrodes.","PeriodicalId":21863,"journal":{"name":"Solar Energy Materials","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2022.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

A major challenge in developing zinc-air batteries (ZABs) is to exploit suitable cathodes to efficiently accelerate the key electrocatalytic processes involved. Herein, a bifunctional oxygen catalytic self-supported MnO2-based electrode is designed that displays superior oxygen reduction and evolution reaction performance over noble metal electrodes with a total overpotential of 0.69 V. In addition, the as-synthesized NiCo2O4@MnO2/carbon nanotube (CNT)-Ni foam self-supported electrode can be directly used as an oxygen electrode without externally adding carbon or a binder and shows reasonable battery performance with a high peak power density of 226 mW cm-2 and a long-term charge-discharge cycling lifetime (5 mA for 160 h). As expected, the rapid oxygen catalytic intrinsic kinetics and high battery performance of the NiCo2O4@MnO2/CNTs-Ni foam electrode originates from the unique three-dimensional hierarchical structure, which effectively promotes mass transfer. Furthermore, the CNTs combined with Ni foam form a unique “meridian” conductive structure that enables rapid electron conduction. Finally, the abundant Mn3+ active sites activated by bimetallic ions shorten the oxygen catalytic reaction distance between the active sites and reactant and reduce the surface activity of MnO2 for the O, OH, and OOH species. This work not only offers a high-performance bifunctional self-supported electrode for ZABs but also opens new insights into the activation of Mn-based electrodes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种具有双异质结结构的高性能可充电锌空气电池用双金属活化MnO2自组装电极
开发锌空气电池(ZABs)的一个主要挑战是寻找合适的阴极来有效地加速关键的电催化过程。本文设计了一种双功能氧催化自支撑mno2电极,其氧还原和进化反应性能优于总过电位为0.69 V的贵金属电极。此外,合成的NiCo2O4@MnO2/碳纳米管(CNT)-Ni泡沫自支撑电极可以直接用作氧电极,而无需外部添加碳或粘合剂,具有较高的峰值功率密度226 mW cm-2和较长的充放电循环寿命(5 mA, 160 h),具有合理的电池性能。NiCo2O4@MnO2/CNTs-Ni泡沫电极的快速氧催化本然动力学和高电池性能源于其独特的三维分层结构,有效地促进了传质。此外,CNTs与Ni泡沫结合形成独特的“子午线”导电结构,使电子能够快速传导。最后,双金属离子活化的丰富的Mn3+活性位点缩短了活性位点与反应物之间的氧催化反应距离,降低了MnO2对O、OH和OOH的表面活性。这项工作不仅为ZABs提供了一种高性能的双功能自支撑电极,而且为mn基电极的激活开辟了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cathode materials in microbial electrosynthesis systems for carbon dioxide reduction: recent progress and perspectives Strategies towards inhibition of aluminum current collector corrosion in lithium batteries Efficient separation and selective Li recycling of spent LiFePO4 cathode Fluorine chemistry in lithium-ion and sodium-ion batteries PGM-free carbon-based catalysts for the electrocatalytic oxygen reduction reaction: active sites and activity enhancement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1