Deadline-aware concentration of synchrophasor data: An optimal stopping approach

Miao He, Junshan Zhang
{"title":"Deadline-aware concentration of synchrophasor data: An optimal stopping approach","authors":"Miao He, Junshan Zhang","doi":"10.1109/SmartGridComm.2014.7007662","DOIUrl":null,"url":null,"abstract":"Deadline-aware concentration of synchrophasor data from spatially dispersed phasor measurement units (PMUs) is studied, with an objective to find the optimal policy for the wait time of a phasor data concentrator (PDC), such that the deadline-constrained synchrophasor data delivery from PMUs via PDC to control center achieves maximal expected throughput. When the statistical information on the communication latency from PMUs to PDC and from PDC to control center is known, the wait time problem is cast as a continuous-time optimal stopping problem. The optimal stopping policy is then shown to exist, and then obtained by utilizing the infinitesimal look-ahead rule under mild conditions. Further, the scenarios with substation PDCs or super PDCs are also considered. The dynamic wait time policy obtained by using the proposed optimal stopping approach, in comparison with two fixed wait time policies, results in significant improvement, as revealed through simulation studies.","PeriodicalId":6499,"journal":{"name":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","volume":"89 1","pages":"296-301"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2014.7007662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Deadline-aware concentration of synchrophasor data from spatially dispersed phasor measurement units (PMUs) is studied, with an objective to find the optimal policy for the wait time of a phasor data concentrator (PDC), such that the deadline-constrained synchrophasor data delivery from PMUs via PDC to control center achieves maximal expected throughput. When the statistical information on the communication latency from PMUs to PDC and from PDC to control center is known, the wait time problem is cast as a continuous-time optimal stopping problem. The optimal stopping policy is then shown to exist, and then obtained by utilizing the infinitesimal look-ahead rule under mild conditions. Further, the scenarios with substation PDCs or super PDCs are also considered. The dynamic wait time policy obtained by using the proposed optimal stopping approach, in comparison with two fixed wait time policies, results in significant improvement, as revealed through simulation studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同步量数据的截止时间感知集中:一种最佳停止方法
研究了空间分散相量测量单元(pmu)同步相量数据的截止时间感知集中,目的是寻找相量数据集中器(PDC)等待时间的最优策略,使pmu经PDC向控制中心传送的受截止时间约束的同步相量数据获得最大的期望吞吐量。当pmu到PDC和PDC到控制中心的通信时延统计信息已知时,将等待时间问题转化为连续时间最优停机问题。然后证明了最优停止策略的存在性,并在温和条件下利用无穷小预判规则求出了最优停止策略。此外,还考虑了变电站配电柜或超级配电柜的场景。仿真研究表明,采用本文提出的最优停车方法得到的动态等待时间策略与两种固定的等待时间策略相比,具有显著的改进效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Household Level Electricity Load Forecasting Using Echo State Network Roaming electric vehicle charging and billing: An anonymous multi-user protocol Generating realistic Smart Grid communication topologies based on real-data Cooperative closed-loop MIMO selective transmissions in a HV environment Integration of V2H/V2G hybrid system for demand response in distribution network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1