Fernando Gázquez, F. Rull, José María Calaforra, G. Venegas, José Antonio Carbonero Manrique, A. Sanz, Jesús Medina, A. Catalá-Espí, A. Sansano, R. Navarro, Paolo Forti, J. D. Waele, J. Martínez-Frías
{"title":"Caracterización mineralógica y geoquímica de minerales hidratados de ambientes subterráneos: implicaciones para la exploración planetaria","authors":"Fernando Gázquez, F. Rull, José María Calaforra, G. Venegas, José Antonio Carbonero Manrique, A. Sanz, Jesús Medina, A. Catalá-Espí, A. Sansano, R. Navarro, Paolo Forti, J. D. Waele, J. Martínez-Frías","doi":"10.3989/EGEOL.41688.314","DOIUrl":null,"url":null,"abstract":"The recent discovery of hydrated sulfates on the Martian surface suggests that widespread wet conditions were present during its early geological history. Upon this discovery, a growing interest has emerged in the study of this group of minerals from terrestrial environments as potential Martian analogs. Here, we evaluate the potential of various analytical techniques involved in current and future mission to Mars for detecting hydrated minerals from caves and mines of Spain and the mining district of Iglesias-Carbonia (Sardinia, Italy). Minerals were analyzed by Raman spectroscopy, which will be included in the payload of the ESA’s 2018 ExoMars mission. On the other hand, IR spectroscopy, also included in the ExoMars mission, as well as LIBS spectroscopy and a combined XRD-XRF analyzer, both onboard the Curiosity rover of NASA’s MSL mission, were utilized. Hydrated sulfates (gypsum, epsomite, jarosite and glaucocerinite), silicates (hemimorphite) and carbonates (hydrozincite and hydromagnesite) were characterized. Most of these minerals have also been detected on the Martian surface. The mechanisms involved in the genesis of these minerals and the potential analogies with the minerogenesis on Mars are discussed. The Raman-LIBS combination appears to be the most powerful tool for detecting hydrated minerals in Martian conditions. This technology will probably be considered to be onboard of further planetary missions.","PeriodicalId":50496,"journal":{"name":"Estudios Geologicos-Madrid","volume":"16 1","pages":"009"},"PeriodicalIF":0.8000,"publicationDate":"2014-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Estudios Geologicos-Madrid","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3989/EGEOL.41688.314","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 5
Abstract
The recent discovery of hydrated sulfates on the Martian surface suggests that widespread wet conditions were present during its early geological history. Upon this discovery, a growing interest has emerged in the study of this group of minerals from terrestrial environments as potential Martian analogs. Here, we evaluate the potential of various analytical techniques involved in current and future mission to Mars for detecting hydrated minerals from caves and mines of Spain and the mining district of Iglesias-Carbonia (Sardinia, Italy). Minerals were analyzed by Raman spectroscopy, which will be included in the payload of the ESA’s 2018 ExoMars mission. On the other hand, IR spectroscopy, also included in the ExoMars mission, as well as LIBS spectroscopy and a combined XRD-XRF analyzer, both onboard the Curiosity rover of NASA’s MSL mission, were utilized. Hydrated sulfates (gypsum, epsomite, jarosite and glaucocerinite), silicates (hemimorphite) and carbonates (hydrozincite and hydromagnesite) were characterized. Most of these minerals have also been detected on the Martian surface. The mechanisms involved in the genesis of these minerals and the potential analogies with the minerogenesis on Mars are discussed. The Raman-LIBS combination appears to be the most powerful tool for detecting hydrated minerals in Martian conditions. This technology will probably be considered to be onboard of further planetary missions.
期刊介绍:
Since 1945 Estudios Geologicos publishes original research works, as well as reviews, about any topic on Earth Sciences.
Estudios Geologicos is published as one yearly volume, divided into two half-yearly issues. It is edited by the Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC) at the Instituto de Geociencias (CSIC-UCM).
Estudios Geologicos provides free access to full-text articles through this electronic edition. Accepted articles appear online as "Forthcoming articles" as soon as the galley proofs have been approved by the authors and the Editor-in-Chief. No changes can be made after online publication.