{"title":"A One-Dimensional Residual Network and Physical Fitness-Based Exercise Prescription Recommendation Method","authors":"Runqing Fan, Zhenlian Peng, Buqing Cao, Jianxun Liu, Peng Che, Tieping Chen","doi":"10.1109/CSCloud-EdgeCom58631.2023.00046","DOIUrl":null,"url":null,"abstract":"In the context of the national big data strategy, physical fitness test data has become one of the main influencing factors in guiding and promoting the participation of the population in sports and fitness. Recommending exercise prescriptions based on national physical fitness test data has become an important research topic. However, currently, there is little research on how to accurately use computer data processing technology to recommend exercise prescriptions based on physical fitness test data. In this study, we propose a ResNet-based Exercise Prescription (ResNet-EP) method that utilizes one-dimensional residual neural network technology to recommend exercise prescriptions based on physical fitness testing data. This method comprehensively analyzes physical fitness testing data and exercise prescription data and realizes the automatic recommendation of exercise prescriptions. Experimental results on a real dataset demonstrate that the ResNet-EP model outperforms other comparison models in terms of precision (79.98%), recall (83.73%), and F1 score (81.81%). This study provides novel insights into the combination of physical fitness testing and exercise.","PeriodicalId":56007,"journal":{"name":"Journal of Cloud Computing-Advances Systems and Applications","volume":"28 1","pages":"223-228"},"PeriodicalIF":3.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cloud Computing-Advances Systems and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/CSCloud-EdgeCom58631.2023.00046","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of the national big data strategy, physical fitness test data has become one of the main influencing factors in guiding and promoting the participation of the population in sports and fitness. Recommending exercise prescriptions based on national physical fitness test data has become an important research topic. However, currently, there is little research on how to accurately use computer data processing technology to recommend exercise prescriptions based on physical fitness test data. In this study, we propose a ResNet-based Exercise Prescription (ResNet-EP) method that utilizes one-dimensional residual neural network technology to recommend exercise prescriptions based on physical fitness testing data. This method comprehensively analyzes physical fitness testing data and exercise prescription data and realizes the automatic recommendation of exercise prescriptions. Experimental results on a real dataset demonstrate that the ResNet-EP model outperforms other comparison models in terms of precision (79.98%), recall (83.73%), and F1 score (81.81%). This study provides novel insights into the combination of physical fitness testing and exercise.
期刊介绍:
The Journal of Cloud Computing: Advances, Systems and Applications (JoCCASA) will publish research articles on all aspects of Cloud Computing. Principally, articles will address topics that are core to Cloud Computing, focusing on the Cloud applications, the Cloud systems, and the advances that will lead to the Clouds of the future. Comprehensive review and survey articles that offer up new insights, and lay the foundations for further exploratory and experimental work, are also relevant.