Hasini Witharana, Yangdi Lyu, Subodha Charles, P. Mishra
{"title":"A Survey on Assertion-based Hardware Verification","authors":"Hasini Witharana, Yangdi Lyu, Subodha Charles, P. Mishra","doi":"10.1145/3510578","DOIUrl":null,"url":null,"abstract":"Hardware verification of modern electronic systems has been identified as a major bottleneck due to the increasing complexity and time-to-market constraints. One of the major objectives in hardware verification is to drastically reduce the validation and debug time without sacrificing the design quality. Assertion-based verification is a promising avenue for efficient hardware validation and debug. In this article, we provide a comprehensive survey of recent progress in assertion-based hardware verification. Specifically, we outline how to define assertions using temporal logic to specify expected behaviors in different abstraction levels. Next, we describe state-of-the art approaches for automated generation of assertions. We also discuss test generation techniques for activating assertions to ensure that the generated assertions are valid. Finally, we present both pre-silicon and post-silicon assertion-based validation approaches that utilize simulation, formal methods as well as hybrid techniques. We conclude with a discussion on utilizing assertions for verifying both functional and non-functional requirements.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"6 1","pages":"1 - 33"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3510578","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
Hardware verification of modern electronic systems has been identified as a major bottleneck due to the increasing complexity and time-to-market constraints. One of the major objectives in hardware verification is to drastically reduce the validation and debug time without sacrificing the design quality. Assertion-based verification is a promising avenue for efficient hardware validation and debug. In this article, we provide a comprehensive survey of recent progress in assertion-based hardware verification. Specifically, we outline how to define assertions using temporal logic to specify expected behaviors in different abstraction levels. Next, we describe state-of-the art approaches for automated generation of assertions. We also discuss test generation techniques for activating assertions to ensure that the generated assertions are valid. Finally, we present both pre-silicon and post-silicon assertion-based validation approaches that utilize simulation, formal methods as well as hybrid techniques. We conclude with a discussion on utilizing assertions for verifying both functional and non-functional requirements.