Optimal energy management and shift scheduling control of a parallel plug-in hybrid electric vehicle

Jure Soldo, B. Škugor, J. Deur
{"title":"Optimal energy management and shift scheduling control of a parallel plug-in hybrid electric vehicle","authors":"Jure Soldo, B. Škugor, J. Deur","doi":"10.1504/ijpt.2020.10031902","DOIUrl":null,"url":null,"abstract":"This paper deals with design of a control strategy for a parallel powertrain configuration of a plug-in hybrid electric vehicle (PHEV). The control strategy is aimed at minimising fuel consumption and number of gear shift events for a wide range of driving cycles, while keeping the battery state-of-charge within allowable range. A control-oriented backward-looking model of PHEV powertrain is used as a design basis. The control strategy combines a rule-based controller with an equivalent consumption minimisation strategy (ECMS). The ECMS uses both transmission gear ratio and engine torque as control variables, thus eliminating a need for designing a separate gear shift scheduling strategy and exploiting a full potential of powertrain efficiency improvement. The overall control strategy is designed for different characteristic operating regimes including charge depleting, charge sustaining, and blended regimes. The strategy is verified by computer simulations against globally optimal benchmark obtained by using the dynamic programming-based optimisation, whose results are also used for fine tuning of controller parameters.","PeriodicalId":37550,"journal":{"name":"International Journal of Powertrains","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Powertrains","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijpt.2020.10031902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

Abstract

This paper deals with design of a control strategy for a parallel powertrain configuration of a plug-in hybrid electric vehicle (PHEV). The control strategy is aimed at minimising fuel consumption and number of gear shift events for a wide range of driving cycles, while keeping the battery state-of-charge within allowable range. A control-oriented backward-looking model of PHEV powertrain is used as a design basis. The control strategy combines a rule-based controller with an equivalent consumption minimisation strategy (ECMS). The ECMS uses both transmission gear ratio and engine torque as control variables, thus eliminating a need for designing a separate gear shift scheduling strategy and exploiting a full potential of powertrain efficiency improvement. The overall control strategy is designed for different characteristic operating regimes including charge depleting, charge sustaining, and blended regimes. The strategy is verified by computer simulations against globally optimal benchmark obtained by using the dynamic programming-based optimisation, whose results are also used for fine tuning of controller parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
并联插电式混合动力汽车最优能量管理与班次调度控制
研究了插电式混合动力汽车并联动力系统的控制策略设计。该控制策略旨在最大限度地减少燃油消耗和大范围驾驶循环的换挡次数,同时将电池的充电状态保持在允许的范围内。采用以控制为导向的插电式混合动力系统回溯模型作为设计依据。控制策略结合了基于规则的控制器和等效消耗最小化策略(ECMS)。ECMS采用变速器传动比和发动机扭矩作为控制变量,因此无需设计单独的换挡调度策略,并充分发挥动力系统效率提高的潜力。总体控制策略是针对不同的特征运行状态设计的,包括电荷耗尽、电荷维持和混合状态。利用基于动态规划的优化方法得到全局最优基准,并通过计算机仿真验证了该策略的有效性,其结果也用于控制器参数的微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Powertrains
International Journal of Powertrains Engineering-Automotive Engineering
CiteScore
1.20
自引率
0.00%
发文量
25
期刊介绍: IJPT addresses novel scientific/technological results contributing to advancing powertrain technology, from components/subsystems to system integration/controls. Focus is primarily but not exclusively on ground vehicle applications. IJPT''s perspective is largely inspired by the fact that many innovations in powertrain advancement are only possible due to synergies between mechanical design, mechanisms, mechatronics, controls, networking system integration, etc. The science behind these is characterised by physical phenomena across the range of physics (multiphysics) and scale of motion (multiscale) governing the behaviour of components/subsystems.
期刊最新文献
Design and implementation of novel variants of multi-level inverters for traction and heavy vehicle applications Coordination Control for Output Voltage of Optical-storage Independent Microgrid based on Adaptive Optimization The matching model of thermal energy supply and demand in power generation park with new energy and municipal solid waste Deep-Q-Network Based Energy Management of Multi Resources in Limited Power Micro-grid Simulation of air foil bearings for use in turbo compressor applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1