Open- and Cased- Hole Formation Evaluation Workflows Running Together for Reducing Uncertainties in Gas Reservoirs: An Acquisition Data and Evaluation Strategy in Dnieper-Donets Basin, Ukraine
R. Zambrano, M. Sadivnyk, Yevhen Makar, C. Cavalleri, D. Rose
{"title":"Open- and Cased- Hole Formation Evaluation Workflows Running Together for Reducing Uncertainties in Gas Reservoirs: An Acquisition Data and Evaluation Strategy in Dnieper-Donets Basin, Ukraine","authors":"R. Zambrano, M. Sadivnyk, Yevhen Makar, C. Cavalleri, D. Rose","doi":"10.2118/208558-ms","DOIUrl":null,"url":null,"abstract":"\n Formation evaluation using cased-hole logs is a primary option for re-evaluating old wells in brownfields or contingency logging in new wells. Its consistency with a robust open hole evaluation is vital for its future implementation in field development. This work describes detailed open- and cased- hole evaluation workflows integrating different advanced subsurface measurements and alternative interpretation techniques to reduce the uncertainties of deriving the main petrophysical properties across the conventional and tight gas reservoirs in the Dnieper-Donets basin.\n Since not all open-hole measurements can be recorded behind casing and some of the cased hole logs are not characterized for open hole conditions, it is not always possible to implement the same evaluation techniques for measurements done in open hole and cased hole. Nevertheless, different measurements provide different formation responses that supplement their gaps from one another. A wireline data acquisition strategy has been elaborated to carry out formation evaluation workflows using open- and cased-hole data independently but learning from each other. The methodology is based on novel and non-standard evaluation techniques that use measurements from advanced wireline technology such as nuclear magnetic resonance (NMR) and advanced pulsed neutron spectroscopy logs.\n The methodology was applied to log data recorded on the Visean and Serpukhovian (Lower Carboniferous) productive gas zones, characterized by porosity (5-15pu) and permeability (0.1-100mD). The principal challenge for the formation evaluation of these reservoirs is deriving an accurate estimation of porosity, which requires removing the gas and matrix effects on the log responses. An inaccurate porosity estimation will result in an inaccurate permeability and water saturation, and the problem worsens in low-porosity rocks. In the open hole, the porosity computation from the Density-Magnetic Resonance (DMR) technique has proven to be more accurate in comparison with common single porosity methods. The same problem is addressed in cased hole conditions with the advanced pulsed neutron spectroscopy logs and a novel technique that combines the thermal neutron elastic scattering and fast neutron cross sections to obtain a gas-free and matrix-corrected porosity, as well as a resistivity independent gas saturation. The consistency of petrophysical properties independently estimated from the two separate workflows add confidence to the approach, and this is reflected in the gas production obtained from the perforated intervals.\n This script describes in detail the open- and cased- hole formation evaluation workflows and the wireline technology and methodologies applied. Actual examples illustrate the effectiveness of these quantitative approaches in the Dnieper-Donets basin.","PeriodicalId":11215,"journal":{"name":"Day 2 Wed, November 24, 2021","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, November 24, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208558-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Formation evaluation using cased-hole logs is a primary option for re-evaluating old wells in brownfields or contingency logging in new wells. Its consistency with a robust open hole evaluation is vital for its future implementation in field development. This work describes detailed open- and cased- hole evaluation workflows integrating different advanced subsurface measurements and alternative interpretation techniques to reduce the uncertainties of deriving the main petrophysical properties across the conventional and tight gas reservoirs in the Dnieper-Donets basin.
Since not all open-hole measurements can be recorded behind casing and some of the cased hole logs are not characterized for open hole conditions, it is not always possible to implement the same evaluation techniques for measurements done in open hole and cased hole. Nevertheless, different measurements provide different formation responses that supplement their gaps from one another. A wireline data acquisition strategy has been elaborated to carry out formation evaluation workflows using open- and cased-hole data independently but learning from each other. The methodology is based on novel and non-standard evaluation techniques that use measurements from advanced wireline technology such as nuclear magnetic resonance (NMR) and advanced pulsed neutron spectroscopy logs.
The methodology was applied to log data recorded on the Visean and Serpukhovian (Lower Carboniferous) productive gas zones, characterized by porosity (5-15pu) and permeability (0.1-100mD). The principal challenge for the formation evaluation of these reservoirs is deriving an accurate estimation of porosity, which requires removing the gas and matrix effects on the log responses. An inaccurate porosity estimation will result in an inaccurate permeability and water saturation, and the problem worsens in low-porosity rocks. In the open hole, the porosity computation from the Density-Magnetic Resonance (DMR) technique has proven to be more accurate in comparison with common single porosity methods. The same problem is addressed in cased hole conditions with the advanced pulsed neutron spectroscopy logs and a novel technique that combines the thermal neutron elastic scattering and fast neutron cross sections to obtain a gas-free and matrix-corrected porosity, as well as a resistivity independent gas saturation. The consistency of petrophysical properties independently estimated from the two separate workflows add confidence to the approach, and this is reflected in the gas production obtained from the perforated intervals.
This script describes in detail the open- and cased- hole formation evaluation workflows and the wireline technology and methodologies applied. Actual examples illustrate the effectiveness of these quantitative approaches in the Dnieper-Donets basin.