{"title":"Iterative Multi-Attribute Procurement Auction with Decision Support for Bid Formulation","authors":"T. Chetan, M. Jenamani, S. P. Sarmah","doi":"10.1142/s0217595921500366","DOIUrl":null,"url":null,"abstract":"Iterative multi-attribute reverse auctions in practice create certain difficulties for both the buyer and participating bidders. While the buyer faces the problem of creating the right attribute weights, the bidders have difficulty in adjusting the attribute values in each round. In this paper, we present an iterative multi-attribute reverse auction mechanism based on integrated data envelopment analysis (DEA) and best–worst method (BWM) with an objective of reducing the intervention of the buyer in the determination of the winner and also easing up the preference elicitation process. Unlike the typical scoring auctions, the proposed mechanism does not require the buyer to estimate the characteristics of the participating sellers in order to determine the optimal scoring function. As there will be no other intervention from the buyer during the winner determination process, the proposed method makes the procurement process impartial and corruption-free. Besides solving the buyer’s problem, the proposed mechanism is also associated with an optimal bid determination method (OBDM) to assist the sellers in formulating improvised bids in iterative rounds of the auction. Simulation experiments show that the proposed OBDM benefits both the buyer and sellers. For the buyer, it provides higher expected utility and attribute values as per his preferences; for the seller, it gives a better expected profit and a higher probability of winning.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":"26 1","pages":"2150036:1-2150036:30"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217595921500366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Iterative multi-attribute reverse auctions in practice create certain difficulties for both the buyer and participating bidders. While the buyer faces the problem of creating the right attribute weights, the bidders have difficulty in adjusting the attribute values in each round. In this paper, we present an iterative multi-attribute reverse auction mechanism based on integrated data envelopment analysis (DEA) and best–worst method (BWM) with an objective of reducing the intervention of the buyer in the determination of the winner and also easing up the preference elicitation process. Unlike the typical scoring auctions, the proposed mechanism does not require the buyer to estimate the characteristics of the participating sellers in order to determine the optimal scoring function. As there will be no other intervention from the buyer during the winner determination process, the proposed method makes the procurement process impartial and corruption-free. Besides solving the buyer’s problem, the proposed mechanism is also associated with an optimal bid determination method (OBDM) to assist the sellers in formulating improvised bids in iterative rounds of the auction. Simulation experiments show that the proposed OBDM benefits both the buyer and sellers. For the buyer, it provides higher expected utility and attribute values as per his preferences; for the seller, it gives a better expected profit and a higher probability of winning.