Adaptive region aggregation for multi‐view stereo matching using deformable convolutional networks

Han Hu, Liupeng Su, Shunfu Mao, Min Chen, Guoqiang Pan, Bo Xu, Qing Zhu
{"title":"Adaptive region aggregation for multi‐view stereo matching using deformable convolutional networks","authors":"Han Hu, Liupeng Su, Shunfu Mao, Min Chen, Guoqiang Pan, Bo Xu, Qing Zhu","doi":"10.1111/phor.12459","DOIUrl":null,"url":null,"abstract":"Deep‐learning methods have demonstrated promising performance in multi‐view stereo (MVS) applications. However, it remains challenging to apply a geometrical prior on the adaptive matching windows to achieve efficient three‐dimensional reconstruction. To address this problem, this paper proposes a learnable adaptive region aggregation method based on deformable convolutional networks (DCNs), which is integrated into the feature extraction workflow for MVSNet method that uses coarse‐to‐fine structure. Following the conventional pipeline of MVSNet, a DCN is used to densely estimate and apply transformations in our feature extractor, which is composed of a deformable feature pyramid network (DFPN). Furthermore, we introduce a dedicated offset regulariser to promote the convergence of the learnable offsets of the DCN. The effectiveness of the proposed DFPN is validated through quantitative and qualitative evaluations on the BlendedMVS and Tanks and Temples benchmark datasets within a cross‐dataset evaluation setting.","PeriodicalId":22881,"journal":{"name":"The Photogrammetric Record","volume":"16 1","pages":"430 - 449"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Photogrammetric Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/phor.12459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep‐learning methods have demonstrated promising performance in multi‐view stereo (MVS) applications. However, it remains challenging to apply a geometrical prior on the adaptive matching windows to achieve efficient three‐dimensional reconstruction. To address this problem, this paper proposes a learnable adaptive region aggregation method based on deformable convolutional networks (DCNs), which is integrated into the feature extraction workflow for MVSNet method that uses coarse‐to‐fine structure. Following the conventional pipeline of MVSNet, a DCN is used to densely estimate and apply transformations in our feature extractor, which is composed of a deformable feature pyramid network (DFPN). Furthermore, we introduce a dedicated offset regulariser to promote the convergence of the learnable offsets of the DCN. The effectiveness of the proposed DFPN is validated through quantitative and qualitative evaluations on the BlendedMVS and Tanks and Temples benchmark datasets within a cross‐dataset evaluation setting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可变形卷积网络的多视点立体匹配自适应区域聚合
深度学习方法在多视点立体(MVS)应用中表现出了良好的性能。然而,如何在自适应匹配窗口上应用几何先验来实现有效的三维重建仍然是一个挑战。为了解决这一问题,本文提出了一种基于可变形卷积网络(DCNs)的可学习自适应区域聚合方法,并将其集成到使用粗-细结构的MVSNet方法的特征提取工作流程中。在MVSNet传统管道的基础上,利用DCN对可变形特征金字塔网络(DFPN)构成的特征提取器进行密集估计和变换。此外,我们还引入了一个专用的偏移校正器来促进DCN的可学习偏移的收敛性。通过在交叉数据集评估设置中对BlendedMVS和Tanks and Temples基准数据集进行定量和定性评估,验证了所提出的DFPN的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
59th Photogrammetric Week: Advancement in photogrammetry, remote sensing and Geoinformatics Obituary for Prof. Dr.‐Ing. Dr. h.c. mult. Gottfried Konecny Topographic mapping from space dedicated to Dr. Karsten Jacobsen’s 80th birthday Frontispiece: Comparison of 3D models with texture before and after restoration ISPRS TC IV Mid‐Term Symposium: Spatial information to empower the Metaverse
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1