A. Chattopadhyay, Nikhil S. Mande, Swagato Sanyal, Suhail Sherif
{"title":"Lifting to Parity Decision Trees Via Stifling","authors":"A. Chattopadhyay, Nikhil S. Mande, Swagato Sanyal, Suhail Sherif","doi":"10.48550/arXiv.2211.17214","DOIUrl":null,"url":null,"abstract":"We show that the deterministic decision tree complexity of a (partial) function or relation $f$ lifts to the deterministic parity decision tree (PDT) size complexity of the composed function/relation $f \\circ g$ as long as the gadget $g$ satisfies a property that we call stifling. We observe that several simple gadgets of constant size, like Indexing on 3 input bits, Inner Product on 4 input bits, Majority on 3 input bits and random functions, satisfy this property. It can be shown that existing randomized communication lifting theorems ([G\\\"{o}\\\"{o}s, Pitassi, Watson. SICOMP'20], [Chattopadhyay et al. SICOMP'21]) imply PDT-size lifting. However there are two shortcomings of this approach: first they lift randomized decision tree complexity of $f$, which could be exponentially smaller than its deterministic counterpart when either $f$ is a partial function or even a total search problem. Second, the size of the gadgets in such lifting theorems are as large as logarithmic in the size of the input to $f$. Reducing the gadget size to a constant is an important open problem at the frontier of current research. Our result shows that even a random constant-size gadget does enable lifting to PDT size. Further, it also yields the first systematic way of turning lower bounds on the width of tree-like resolution proofs of the unsatisfiability of constant-width CNF formulas to lower bounds on the size of tree-like proofs in the resolution with parity system, i.e., $\\textit{Res}$($\\oplus$), of the unsatisfiability of closely related constant-width CNF formulas.","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.17214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We show that the deterministic decision tree complexity of a (partial) function or relation $f$ lifts to the deterministic parity decision tree (PDT) size complexity of the composed function/relation $f \circ g$ as long as the gadget $g$ satisfies a property that we call stifling. We observe that several simple gadgets of constant size, like Indexing on 3 input bits, Inner Product on 4 input bits, Majority on 3 input bits and random functions, satisfy this property. It can be shown that existing randomized communication lifting theorems ([G\"{o}\"{o}s, Pitassi, Watson. SICOMP'20], [Chattopadhyay et al. SICOMP'21]) imply PDT-size lifting. However there are two shortcomings of this approach: first they lift randomized decision tree complexity of $f$, which could be exponentially smaller than its deterministic counterpart when either $f$ is a partial function or even a total search problem. Second, the size of the gadgets in such lifting theorems are as large as logarithmic in the size of the input to $f$. Reducing the gadget size to a constant is an important open problem at the frontier of current research. Our result shows that even a random constant-size gadget does enable lifting to PDT size. Further, it also yields the first systematic way of turning lower bounds on the width of tree-like resolution proofs of the unsatisfiability of constant-width CNF formulas to lower bounds on the size of tree-like proofs in the resolution with parity system, i.e., $\textit{Res}$($\oplus$), of the unsatisfiability of closely related constant-width CNF formulas.