Pemodelan Analisis Sentimen Masyarakat terhadap Adaptasi Kebiasaan Baru (AKB) mengunakan Algoritma Naïve Bayes

Siti Yuliyanti, Siti M Sholihah
{"title":"Pemodelan Analisis Sentimen Masyarakat terhadap Adaptasi Kebiasaan Baru (AKB) mengunakan Algoritma Naïve Bayes","authors":"Siti Yuliyanti, Siti M Sholihah","doi":"10.26760/mindjournal.v6i2.155-167","DOIUrl":null,"url":null,"abstract":"AbstrakPandemi Covid-19 hampir masuk tahun ke dua di Indonesia, pemerintah terus berupaya menekan laju peningkatan penularan Covid-19 melalui berbagai media. Sosialisasi dan informasi melalui media sosial yang merupakan wadah paling cepat untuk tersampaikan kepada masyarakat. Berbagai istilah digunakan seperti adaptasi kebiasaan baru, social distancing, PSBB sampai PPKM sehingga memicu masyarakat untuk beropini di media sosial. Penelitian ini menganalisis sentiment masyarakat terkait opini peningkatan Covid-19 dari twitter. Klasifikasi tweet menggunakan Naive Bayes dengan penambahan seleksi fitur. Penggunaan confusion matriks untuk mengetahui performance algoritma Naive Bayes. Berdasarkan pengujian, penelitian ini menghasilkan 76% dengan accuracy positif sebesar 72,727%, accuracy negatif sebesar 75% dan accuracy netral sebesar 78,947%. Sehingga disimpulkan penggunaan model klasifikasi Naive Bayes dengan fitur seleksi dapat meningkatkan akurasi.Kata kunci: analisis sentimen, seleksi fitur, twitter crawling, naïve bayes, klasifikasi, emosiAbstractCovid-19 pandemic is almost in its second year in Indonesia, the government continues to try to suppress the rate of increase in the transmission of Covid-19 through various media. Socialization and information through social media which is the fastest medium to be conveyed to the public. Various terms are used, such as adapting new habits, social distancing, PSBB to PPKM, thus triggering the public to share opinions on social media. This study analyzes public sentiment regarding the increasing opinion of Covid-19 from twitter. Tweet classification based on positive, negative and neutral classes using Naive Bayes with feature selection. The use of confusion matrix to determine the performance of the Naive Bayes algorithm. BasedThis Research, the results from the sentiment analysis system using the nave Bayes classifier of 76% with positive accuracy of 72.727%, negative accuracy of 75% and neutral accuracy of 78.947%. So it can be concluded that the use of the Naive Bayes classification model with the selection feature can increase accuracy.Keywords: sentiment analysis, fitur selection twitter crawling, naïve bayes, clasification, emotion","PeriodicalId":43900,"journal":{"name":"Time & Mind-The Journal of Archaeology Consciousness and Culture","volume":"28 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Time & Mind-The Journal of Archaeology Consciousness and Culture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/mindjournal.v6i2.155-167","RegionNum":4,"RegionCategory":"历史学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

AbstrakPandemi Covid-19 hampir masuk tahun ke dua di Indonesia, pemerintah terus berupaya menekan laju peningkatan penularan Covid-19 melalui berbagai media. Sosialisasi dan informasi melalui media sosial yang merupakan wadah paling cepat untuk tersampaikan kepada masyarakat. Berbagai istilah digunakan seperti adaptasi kebiasaan baru, social distancing, PSBB sampai PPKM sehingga memicu masyarakat untuk beropini di media sosial. Penelitian ini menganalisis sentiment masyarakat terkait opini peningkatan Covid-19 dari twitter. Klasifikasi tweet menggunakan Naive Bayes dengan penambahan seleksi fitur. Penggunaan confusion matriks untuk mengetahui performance algoritma Naive Bayes. Berdasarkan pengujian, penelitian ini menghasilkan 76% dengan accuracy positif sebesar 72,727%, accuracy negatif sebesar 75% dan accuracy netral sebesar 78,947%. Sehingga disimpulkan penggunaan model klasifikasi Naive Bayes dengan fitur seleksi dapat meningkatkan akurasi.Kata kunci: analisis sentimen, seleksi fitur, twitter crawling, naïve bayes, klasifikasi, emosiAbstractCovid-19 pandemic is almost in its second year in Indonesia, the government continues to try to suppress the rate of increase in the transmission of Covid-19 through various media. Socialization and information through social media which is the fastest medium to be conveyed to the public. Various terms are used, such as adapting new habits, social distancing, PSBB to PPKM, thus triggering the public to share opinions on social media. This study analyzes public sentiment regarding the increasing opinion of Covid-19 from twitter. Tweet classification based on positive, negative and neutral classes using Naive Bayes with feature selection. The use of confusion matrix to determine the performance of the Naive Bayes algorithm. BasedThis Research, the results from the sentiment analysis system using the nave Bayes classifier of 76% with positive accuracy of 72.727%, negative accuracy of 75% and neutral accuracy of 78.947%. So it can be concluded that the use of the Naive Bayes classification model with the selection feature can increase accuracy.Keywords: sentiment analysis, fitur selection twitter crawling, naïve bayes, clasification, emotion
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用天真贝斯算法对社会适应新习惯的情绪分析建模
印度尼西亚的Covid-19大流行几乎是第二年,政府继续努力通过各种媒体压制Covid-19感染率的上升。通过社交媒体进行社交和信息,这是向公众传递的最快的媒介。各种术语的使用包括新习惯的适应,社会的分歧,PSBB到PPKM,从而激发人们对社交媒体的意见。这项研究分析了推特上Covid-19高涨的舆论情绪。推特将“天真的贝斯”分类为带有特色选择的“网状”。利用孔子矩阵来确定原始算法的表现。根据测试,该研究得出76%的正确率为72.727%,负准确为75%,中性准确为78.947%。由此推断,使用带有选择特征的天真的分类模型可以增加准确性。关键词:情绪分析、特征选择、推特爬虫、天真的贝斯、分类、情感诽谤、灾病在印尼几乎有二年之久,政府继续努力通过不同的媒体来提高价格。社交媒体上的社交化和信息是吸引公众的最快媒介。各种各样的terms被使用,就像新习惯、社交分歧、PSBB对PPKM、敦促公众分享社交媒体的观点一样。这项研究分析公共情绪分析反映了从推特上窃取的Covid-19观点。基于积极、消极和神经冲突的推特分类,使用“天生的吸引力”。用混乱矩阵来确定天真蝙蝠算法的表现。BasedThis研究表明,过去的分析系统使用了76%的nave Bayes经典fier,检测为72,727%,准确为75%和神经准确为78,947%。所以可以确定的是,用最天真的蝙蝠模型的选举特征可以增加准确程度。Keywords:情感分析,twitter爬虫获取特征,天真贝斯,clasexution, emotion
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
23
期刊最新文献
The Rough Tor Effect: early prehistoric monuments focusing on significant tors in Cornwall Apolline divination: hallucinogenic substances or cognitive inputs? The case of the laurel Performance theory: a growing interest in rock art research Archaeology at the intersection between cognitive neuroscience, performance theory, and architecture: from psychoactive substances to rock art and bone shelters Living inside a mammoth
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1