{"title":"C-COVIDNet: A CNN Model for COVID-19 Detection Using Image Processing.","authors":"Neha Rajawat, Bharat Singh Hada, Mayank Meghawat, Soniya Lalwani, Rajesh Kumar","doi":"10.1007/s13369-022-06841-2","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 has become a global disaster that has disturbed the socioeconomic fabric of the world. Efficient and cost-effective diagnosis methods are very much required for better treatment and eliminating false cases for COVID-19. COVID-19 disease is a type of respiratory syndrome, thus lung X-ray analysis has got the attention for an effective diagnosis. Hence, the proposed study introduces an Image processing based COVID-19 detection model C-COVIDNet, which is trained on a dataset of chest X-ray images belonging to three categories: COVID-19, Pneumonia, and Normal person. Image preprocessing pipeline is used for extracting the region of interest (ROI), so that the required features may be present in the input. This lightweight convolution neural network (CNN) based approach has achieved an accuracy of 97.5% and an F1-score of 97.91%. Model input images are generated in batches using a custom data generator. The performance of C-COVIDNet has outperformed the state-of-the-art. The promising results will surely help in accelerating the development of deep learning-based COVID-19 diagnosis tools using radiography.</p>","PeriodicalId":54353,"journal":{"name":"Engineering Management Journal","volume":"24 1","pages":"10811-10822"},"PeriodicalIF":1.9000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9055375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Management Journal","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-022-06841-2","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/4/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
COVID-19 has become a global disaster that has disturbed the socioeconomic fabric of the world. Efficient and cost-effective diagnosis methods are very much required for better treatment and eliminating false cases for COVID-19. COVID-19 disease is a type of respiratory syndrome, thus lung X-ray analysis has got the attention for an effective diagnosis. Hence, the proposed study introduces an Image processing based COVID-19 detection model C-COVIDNet, which is trained on a dataset of chest X-ray images belonging to three categories: COVID-19, Pneumonia, and Normal person. Image preprocessing pipeline is used for extracting the region of interest (ROI), so that the required features may be present in the input. This lightweight convolution neural network (CNN) based approach has achieved an accuracy of 97.5% and an F1-score of 97.91%. Model input images are generated in batches using a custom data generator. The performance of C-COVIDNet has outperformed the state-of-the-art. The promising results will surely help in accelerating the development of deep learning-based COVID-19 diagnosis tools using radiography.
期刊介绍:
EMJ is designed to provide practical, pertinent knowledge on the management of technology, technical professionals, and technical organizations. EMJ strives to provide value to the practice of engineering management and engineering managers. EMJ is an archival journal that facilitates both practitioners and university faculty in publishing useful articles. The primary focus is on articles that improve the practice of engineering management. To support the practice of engineering management, EMJ publishes papers within key engineering management content areas. EMJ Editors will continue to refine these areas to ensure they are aligned with the challenges faced by technical organizations and technical managers.