Effect of Re/Ru on constituents distribution and creep performance of nickel-based single crystal alloys

IF 1 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials at High Temperatures Pub Date : 2023-08-14 DOI:10.1080/09603409.2023.2244297
Songwen Tian, De-long Shu, Lirong Liu, S. Tian
{"title":"Effect of Re/Ru on constituents distribution and creep performance of nickel-based single crystal alloys","authors":"Songwen Tian, De-long Shu, Lirong Liu, S. Tian","doi":"10.1080/09603409.2023.2244297","DOIUrl":null,"url":null,"abstract":"ABSTRACT The effects of Re/Re on the element distribution and creep performance of nickel-based single crystal alloy by using atom probe tomography (APT) and creeping property testing has been studied. Results show that the elements Re, Ru, W, Mo, Cr, and Co are the former of γ phase; the elements are distributed in γ and γ‘ phases of two alloys according to various ratios. Some of the Ru atoms in Re-containing alloy make more Al, Ta atoms are dissolved in γ matrix and make more Mo, W, and Re atoms dissolving in γ‘ phase, which increases the alloying degree of γ“, γ phases to enhance the strength and creep resistance of alloy. Particularly, the Re and W atoms dissolved in γ” phase are excluded, during creep, for the enrichmrnt in γ phase near the interface to form their peak content; the lattice distortion coming from the enriched Re and W atoms restrains dislocations gliding to delay the γ’ phase from being sheared. The deformed mechanisms of alloy in the later stage of creep are the dislocations gliding in γ phase and shearing γ’ phase. Wherein, the dislocations of shearing γ’ phase are both glided on {111} planes and cross-glided from {111} to {001} planes to form the KW locks, the ones that restrain the gliding and cross-gliding of dislocations for improving the creep resistance of alloy. While the interaction of the Ru with Re and W atoms make some Reand W atoms reserved in the γ′ phase to delay the diffusion of other elements, which prevents the KW locks from being released, to keep the good resistance of alloy.","PeriodicalId":49877,"journal":{"name":"Materials at High Temperatures","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials at High Temperatures","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09603409.2023.2244297","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The effects of Re/Re on the element distribution and creep performance of nickel-based single crystal alloy by using atom probe tomography (APT) and creeping property testing has been studied. Results show that the elements Re, Ru, W, Mo, Cr, and Co are the former of γ phase; the elements are distributed in γ and γ‘ phases of two alloys according to various ratios. Some of the Ru atoms in Re-containing alloy make more Al, Ta atoms are dissolved in γ matrix and make more Mo, W, and Re atoms dissolving in γ‘ phase, which increases the alloying degree of γ“, γ phases to enhance the strength and creep resistance of alloy. Particularly, the Re and W atoms dissolved in γ” phase are excluded, during creep, for the enrichmrnt in γ phase near the interface to form their peak content; the lattice distortion coming from the enriched Re and W atoms restrains dislocations gliding to delay the γ’ phase from being sheared. The deformed mechanisms of alloy in the later stage of creep are the dislocations gliding in γ phase and shearing γ’ phase. Wherein, the dislocations of shearing γ’ phase are both glided on {111} planes and cross-glided from {111} to {001} planes to form the KW locks, the ones that restrain the gliding and cross-gliding of dislocations for improving the creep resistance of alloy. While the interaction of the Ru with Re and W atoms make some Reand W atoms reserved in the γ′ phase to delay the diffusion of other elements, which prevents the KW locks from being released, to keep the good resistance of alloy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Re/Ru对镍基单晶合金成分分布及蠕变性能的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials at High Temperatures
Materials at High Temperatures 工程技术-材料科学:综合
CiteScore
1.90
自引率
15.40%
发文量
58
审稿时长
>12 weeks
期刊介绍: Materials at High Temperatures welcomes contributions relating to high temperature applications in the energy generation, aerospace, chemical and process industries. The effects of high temperatures and extreme environments on the corrosion and oxidation, fatigue, creep, strength and wear of metallic alloys, ceramics, intermetallics, and refractory and composite materials relative to these industries are covered. Papers on the modelling of behaviour and life prediction are also welcome, provided these are validated by experimental data and explicitly linked to actual or potential applications. Contributions addressing the needs of designers and engineers (e.g. standards and codes of practice) relative to the areas of interest of this journal also fall within the scope. The term ''high temperatures'' refers to the subsequent temperatures of application and not, for example, to those of processing itself. Materials at High Temperatures publishes regular thematic issues on topics of current interest. Proposals for issues are welcomed; please contact one of the Editors with details.
期刊最新文献
Effect of concave–convex degree of substrate surface on thermal shock performance of Cr coating Estimating the Monkman−Grant relation in the presence of errors in measurement of times to failure and minimum creep rates: with application to some high temperature materials Effect of thermal ageing on fatigue crack growth behaviour of forged alloy 617M at elevated temperatures Comparative assessment of a continuum damage mechanics-based creep damage models for India-specific RAFM steel A comparison of hyperbolic sine creep life equations and data correlation methods for these equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1