A general methodology for building multiple aspect trajectories

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing Review Pub Date : 2023-03-27 DOI:10.1145/3555776.3577832
Francesco Lettich, Chiara Pugliese, C. Renso, Fabio Pinelli
{"title":"A general methodology for building multiple aspect trajectories","authors":"Francesco Lettich, Chiara Pugliese, C. Renso, Fabio Pinelli","doi":"10.1145/3555776.3577832","DOIUrl":null,"url":null,"abstract":"The massive use of personal location devices, the Internet of Mobile Things, and Location Based Social Networks, enables the collection of vast amounts of movement data. Such data can be enriched with several semantic dimensions (or aspects), i.e., contextual and heterogeneous information captured in the surrounding environment, leading to the creation of multiple aspect trajectories (MATs). In this work, we present how the MAT-Builder system can be used for the semantic enrichment processing of movement data while being agnostic to aspects and external semantic data sources. This is achieved by integrating MAT-Builder into a methodology which encompasses three design principles and a uniform representation formalism for enriched data based on the Resource Description Framework (RDF) format. An example scenario involving the generation and querying of a dataset of MATs gives a glimpse of the possibilities that our methodology can open up.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 2

Abstract

The massive use of personal location devices, the Internet of Mobile Things, and Location Based Social Networks, enables the collection of vast amounts of movement data. Such data can be enriched with several semantic dimensions (or aspects), i.e., contextual and heterogeneous information captured in the surrounding environment, leading to the creation of multiple aspect trajectories (MATs). In this work, we present how the MAT-Builder system can be used for the semantic enrichment processing of movement data while being agnostic to aspects and external semantic data sources. This is achieved by integrating MAT-Builder into a methodology which encompasses three design principles and a uniform representation formalism for enriched data based on the Resource Description Framework (RDF) format. An example scenario involving the generation and querying of a dataset of MATs gives a glimpse of the possibilities that our methodology can open up.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建立多方面轨迹的一般方法
个人定位设备、移动物联网和基于位置的社交网络的大量使用,使得收集大量的移动数据成为可能。这样的数据可以通过几个语义维度(或方面)来丰富,即在周围环境中捕获的上下文和异构信息,从而创建多个方面轨迹(MATs)。在这项工作中,我们介绍了MAT-Builder系统如何用于运动数据的语义丰富处理,同时对方面和外部语义数据源不可知。这是通过将MAT-Builder集成到一种方法中来实现的,该方法包含三个设计原则和基于资源描述框架(RDF)格式的丰富数据的统一表示形式。一个示例场景涉及MATs数据集的生成和查询,可以让我们了解我们的方法可以打开的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
期刊最新文献
DIWS-LCR-Rot-hop++: A Domain-Independent Word Selector for Cross-Domain Aspect-Based Sentiment Classification Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1