Where shall we go today?: planning touristic tours with tripbuilder

Igo Ramalho Brilhante, J. Macêdo, F. M. Nardini, R. Perego, C. Renso
{"title":"Where shall we go today?: planning touristic tours with tripbuilder","authors":"Igo Ramalho Brilhante, J. Macêdo, F. M. Nardini, R. Perego, C. Renso","doi":"10.1145/2505515.2505643","DOIUrl":null,"url":null,"abstract":"In this paper we propose TripBuilder, a new framework for personalized touristic tour planning. We mine from Flickr the information about the actual itineraries followed by a multitude of different tourists, and we match these itineraries on the touristic Point of Interests available from Wikipedia. The task of planning personalized touristic tours is then modeled as an instance of the Generalized Maximum Coverage problem. Wisdom-of-the-crowds information allows us to derive touristic plans that maximize a measure of interest for the tourist given her preferences and visiting time-budget. Experimental results on three different touristic cities show that our approach is effective and outperforms strong baselines.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

In this paper we propose TripBuilder, a new framework for personalized touristic tour planning. We mine from Flickr the information about the actual itineraries followed by a multitude of different tourists, and we match these itineraries on the touristic Point of Interests available from Wikipedia. The task of planning personalized touristic tours is then modeled as an instance of the Generalized Maximum Coverage problem. Wisdom-of-the-crowds information allows us to derive touristic plans that maximize a measure of interest for the tourist given her preferences and visiting time-budget. Experimental results on three different touristic cities show that our approach is effective and outperforms strong baselines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
我们今天去哪儿?:与tripbuilder一起策划旅游项目
本文提出了一种新的个性化旅游规划框架TripBuilder。我们从Flickr中挖掘出大量不同游客的实际行程信息,并将这些行程与维基百科上的旅游兴趣点进行匹配。然后将个性化旅游计划任务建模为广义最大覆盖问题的一个实例。群体智慧信息使我们能够根据游客的偏好和旅游时间预算,制定出最大限度地提高游客兴趣的旅游计划。在三个不同旅游城市的实验结果表明,我们的方法是有效的,并且优于强基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1