Optimizing QoS routing in hierarchical ATM networks using computational intelligence techniques

A. Vasilakos, M. Saltouros, A. F. Atlassis, W. Pedrycz
{"title":"Optimizing QoS routing in hierarchical ATM networks using computational intelligence techniques","authors":"A. Vasilakos, M. Saltouros, A. F. Atlassis, W. Pedrycz","doi":"10.1109/TSMCC.2003.817354","DOIUrl":null,"url":null,"abstract":"In this paper, the use of a computational intelligence approach -a reinforcement learning algorithm (RLA)-for optimizing the routing in asynchronous transfer mode (ATM) networks based on the private network-to-network interface (PNNI) standard is proposed. This algorithm which is specially designed for the quality of service (QoS) routing problem, aims at maximizing the network revenue (allocating efficiently the network resources) while ensuring the QoS requirements for each connection. In this study, large-scale networks are considered where it becomes necessary to be organized hierarchically so that a scale in terms of computation, communication and storage requirements will be achieved. A comparative performance study of the proposed and other commonly used routing schemes is demonstrated by means of simulation on existing commercial networks. Simulation results over a wide range of uniform, time-varying and skewed loading conditions show the effectiveness of the proposed routing algorithm, and disclose the strength and weakness of the various schemes.","PeriodicalId":55005,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","volume":"40 1","pages":"297-312"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"127","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Re","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCC.2003.817354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 127

Abstract

In this paper, the use of a computational intelligence approach -a reinforcement learning algorithm (RLA)-for optimizing the routing in asynchronous transfer mode (ATM) networks based on the private network-to-network interface (PNNI) standard is proposed. This algorithm which is specially designed for the quality of service (QoS) routing problem, aims at maximizing the network revenue (allocating efficiently the network resources) while ensuring the QoS requirements for each connection. In this study, large-scale networks are considered where it becomes necessary to be organized hierarchically so that a scale in terms of computation, communication and storage requirements will be achieved. A comparative performance study of the proposed and other commonly used routing schemes is demonstrated by means of simulation on existing commercial networks. Simulation results over a wide range of uniform, time-varying and skewed loading conditions show the effectiveness of the proposed routing algorithm, and disclose the strength and weakness of the various schemes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用计算智能技术优化分层ATM网络中的QoS路由
本文提出了一种基于专用网络对网络接口(PNNI)标准的异步传输模式(ATM)网络路由优化的计算智能方法——强化学习算法(RLA)。该算法是专门针对QoS (quality of service,服务质量)路由问题而设计的,其目标是在保证每个连接的QoS要求的同时使网络收益最大化(即有效地分配网络资源)。在本研究中,考虑到需要分层组织的大型网络,以便在计算、通信和存储需求方面实现规模。通过对现有商用网络的仿真,对所提出的路由方案和其他常用路由方案的性能进行了比较研究。在广泛的均匀、时变和倾斜负载条件下的仿真结果表明了所提出的路由算法的有效性,并揭示了各种方案的优缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
3 months
期刊最新文献
System Architectures Enabling Reconfigurable Laboratory-Automation Systems Neural-Network-Based Path Planning for a Multirobot System With Moving Obstacles A Divide-and-Conquer Strategy to Deadlock Prevention in Flexible Manufacturing Systems Comments on "An Adaptive Multimodal Biometric Management Algorithm" Guest Editorial Foreword to the Special Issue on Intelligent Computation for Bioinformatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1