Aerosol and Droplet Generation During Intubation and Normal Breathing: A Simulation Study

Edvards Kalniņš, S. Kazune
{"title":"Aerosol and Droplet Generation During Intubation and Normal Breathing: A Simulation Study","authors":"Edvards Kalniņš, S. Kazune","doi":"10.2478/prolas-2022-0054","DOIUrl":null,"url":null,"abstract":"Abstract The recent COVID-19 pandemic has made important changes to the everyday practice of anaesthetists. Current research has shown that the virus spreads via respiratory droplets and aerosolisation. The aim of this study was to examine the extent of contact contamination, droplet spread and aerosolisation, which may occur with normal breathing and intubation in a mannequin study. In the first experiment, an Ambu bag was attached to the simulation mannequin’s trachea and an atomiser device was placed into the mannequin’s pharynx. This model simulated normal ventilation as 0.5 ml of luminescent fluid was sprayed through the atomiser. In the second experiment, the mannequin was intubated with a videolaryngoscope while spraying 0.5 ml of luminescent fluid through the atomiser, after which the laryngoscope was removed. The spread of the luminescent aerosol cloud after three full breaths, droplet spread and contact contamination were visualised using ultraviolet light. The extent of spread was evaluated using a 4-point Likert scale (0 to 3) by two observers. Each of the experiments was repeated five times. For the first experiment, aerosol formation, droplet spread and contact contamination were 2.5 (2–3), 1 (0–1), 0 (0–1) points. In the second experiment, aerosol formation, droplet spread and contact contamination were 0.5 (0–1), 1 (0–1), 3 (2–3) points, accordingly. Noticeable contact contamination occurs during laryngoscopy and removal of the laryngoscope, whereas droplet contamination with laryngoscopy and normal breathing is minimal. Normal breathing leads to significant aerosol formation.","PeriodicalId":20651,"journal":{"name":"Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/prolas-2022-0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The recent COVID-19 pandemic has made important changes to the everyday practice of anaesthetists. Current research has shown that the virus spreads via respiratory droplets and aerosolisation. The aim of this study was to examine the extent of contact contamination, droplet spread and aerosolisation, which may occur with normal breathing and intubation in a mannequin study. In the first experiment, an Ambu bag was attached to the simulation mannequin’s trachea and an atomiser device was placed into the mannequin’s pharynx. This model simulated normal ventilation as 0.5 ml of luminescent fluid was sprayed through the atomiser. In the second experiment, the mannequin was intubated with a videolaryngoscope while spraying 0.5 ml of luminescent fluid through the atomiser, after which the laryngoscope was removed. The spread of the luminescent aerosol cloud after three full breaths, droplet spread and contact contamination were visualised using ultraviolet light. The extent of spread was evaluated using a 4-point Likert scale (0 to 3) by two observers. Each of the experiments was repeated five times. For the first experiment, aerosol formation, droplet spread and contact contamination were 2.5 (2–3), 1 (0–1), 0 (0–1) points. In the second experiment, aerosol formation, droplet spread and contact contamination were 0.5 (0–1), 1 (0–1), 3 (2–3) points, accordingly. Noticeable contact contamination occurs during laryngoscopy and removal of the laryngoscope, whereas droplet contamination with laryngoscopy and normal breathing is minimal. Normal breathing leads to significant aerosol formation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气管插管和正常呼吸过程中气溶胶和液滴的产生:模拟研究
最近的COVID-19大流行使麻醉师的日常工作发生了重要变化。目前的研究表明,该病毒通过呼吸道飞沫和雾化传播。本研究的目的是检查接触污染的程度,液滴传播和雾化,这可能发生在人体模型研究中正常呼吸和插管。在第一个实验中,在模拟人体的气管上安装了一个Ambu袋,在模型的咽部放置了一个雾化装置。该模型模拟了通过雾化器喷射0.5 ml发光液的正常通风。在第二个实验中,用视频喉镜插管,同时通过喷雾器喷射0.5 ml发光液,然后取下喉镜。使用紫外线观察三次完全呼吸后发光气溶胶云的扩散、液滴扩散和接触污染。传播程度由两名观察员使用4点李克特量表(0到3)进行评估。每个实验都重复了五次。在第一次实验中,气溶胶形成、液滴传播和接触污染分别为2.5(2-3)、1(0 - 1)、0(0 - 1)点。在第二个实验中,气溶胶形成、液滴传播和接触污染分别为0.5(0-1)、1(0-1)、3(2-3)点。在喉镜检查和取下喉镜时,明显的接触性污染会发生,而喉镜检查和正常呼吸时,液滴污染是最小的。正常呼吸会导致大量气溶胶的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
61
审稿时长
20 weeks
期刊最新文献
Assessment of Factors Related to COVID-19 Preventive Health Behaviours Using a Health Belief Model Observation of Automated Management Use of Self-Sampling Kits Effect of COVID-19 on Coverage of Dental Services in Latvia Case Reports on COVID-19 Outcomes During the Pandemic in Patients with Well-Managed HIV Infection in Latvia Importance of Quality of Maternal and Newborn Care in Childbirth: Findings Over Time of the Imagine Euro Study on 40 WHO Standard-Based Quality Measures During the COVID-19 Pandemic in Latvia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1