Beiting Liang, Taoxuan Gao, Defa Bai, Guochang Wang
{"title":"Functional dimension reduction based on fuzzy partition and transformation","authors":"Beiting Liang, Taoxuan Gao, Defa Bai, Guochang Wang","doi":"10.1111/anzs.12363","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Functional sliced inverse regression (FSIR) is the among most popular methods for the functional dimension reduction. However, FSIR has two evident shortcomings. On the one hand, the number of samples in each slice must not be too small and selecting a suitable <i>S</i> is difficult, particularly for data with small sample size, where <i>S</i> indicates the number of slices. On the other hand, FSIR and its related methods are well-known for their poor performance when the link function is an even (or symmetric) dependency. To solve these two problems, we propose three new types of estimation methods. First, we propose the functional fuzzy inverse regression (FFIR) method based on a fuzzy partition. Compared with FSIR that uses a hard partition, the fuzzy partition uses all samples with different weights to estimate the mean in each slice. Therefore, FFIR exhibits good performance even for data with small sample size. Second, we suggest two transformation approaches, namely, FSIRR and FSIRP, avoiding the symmetric dependency between the response and the predictor. FSIRR eliminates the symmetric dependency by transforming the response variable, while FSIRP overcomes the symmetric dependency by transforming the functional predictor. Third, we propose the FFIRR and FFIRP methods by combining the advantages of FFIR and two transformation methods. FFIRR and FFIRP replace the FSIR method on the transformation data via FFIR. Simulation and real data analysis show that three types of proposed methods exhibit better performance than FSIR in terms of the estimation accuracy and stability.</p>\n </div>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"64 1","pages":"45-66"},"PeriodicalIF":0.8000,"publicationDate":"2022-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12363","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
Functional sliced inverse regression (FSIR) is the among most popular methods for the functional dimension reduction. However, FSIR has two evident shortcomings. On the one hand, the number of samples in each slice must not be too small and selecting a suitable S is difficult, particularly for data with small sample size, where S indicates the number of slices. On the other hand, FSIR and its related methods are well-known for their poor performance when the link function is an even (or symmetric) dependency. To solve these two problems, we propose three new types of estimation methods. First, we propose the functional fuzzy inverse regression (FFIR) method based on a fuzzy partition. Compared with FSIR that uses a hard partition, the fuzzy partition uses all samples with different weights to estimate the mean in each slice. Therefore, FFIR exhibits good performance even for data with small sample size. Second, we suggest two transformation approaches, namely, FSIRR and FSIRP, avoiding the symmetric dependency between the response and the predictor. FSIRR eliminates the symmetric dependency by transforming the response variable, while FSIRP overcomes the symmetric dependency by transforming the functional predictor. Third, we propose the FFIRR and FFIRP methods by combining the advantages of FFIR and two transformation methods. FFIRR and FFIRP replace the FSIR method on the transformation data via FFIR. Simulation and real data analysis show that three types of proposed methods exhibit better performance than FSIR in terms of the estimation accuracy and stability.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.