FLUIDS: A First-Order Lightweight Urban Intersection Driving Simulator

Hankun Zhao, Andrew Cui, Schuyler A. Cullen, B. Paden, Michael Laskey, Ken Goldberg
{"title":"FLUIDS: A First-Order Lightweight Urban Intersection Driving Simulator","authors":"Hankun Zhao, Andrew Cui, Schuyler A. Cullen, B. Paden, Michael Laskey, Ken Goldberg","doi":"10.1109/COASE.2018.8560386","DOIUrl":null,"url":null,"abstract":"To facilitate automation of urban driving, we present an efficient, lightweight, open-source, first-order simulator with associated graphical display and algorithmic supervisors. FLUIDS can efficiently simulate traffic intersections with varying state configurations for the training and evaluation of learning algorithms. FLUIDS supports an image-based birdseye state space and a lower dimensional quasi-LIDAR representation. FLUIDS additionally provides algorithmic supervisors for simulating realistic behavior of pedestrians and cars in the environment. FLUIDS generates data in parallel at 4000 state-action pairs per minute and evaluates in parallel an imitation learned policy at 20K evaluations per minute. A velocity controller for avoiding collisions and obeying traffic laws using imitation learning was learned from demonstration. We additionally demonstrate the flexibility of FLUIDS by reporting an extensive sensitivity analysis of the learned model to simulation parameters. FLUIDS 1.0 is available at https://berkeleyautomation.github.io/Urban_Driving_Simulator/.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"29 1","pages":"697-704"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

To facilitate automation of urban driving, we present an efficient, lightweight, open-source, first-order simulator with associated graphical display and algorithmic supervisors. FLUIDS can efficiently simulate traffic intersections with varying state configurations for the training and evaluation of learning algorithms. FLUIDS supports an image-based birdseye state space and a lower dimensional quasi-LIDAR representation. FLUIDS additionally provides algorithmic supervisors for simulating realistic behavior of pedestrians and cars in the environment. FLUIDS generates data in parallel at 4000 state-action pairs per minute and evaluates in parallel an imitation learned policy at 20K evaluations per minute. A velocity controller for avoiding collisions and obeying traffic laws using imitation learning was learned from demonstration. We additionally demonstrate the flexibility of FLUIDS by reporting an extensive sensitivity analysis of the learned model to simulation parameters. FLUIDS 1.0 is available at https://berkeleyautomation.github.io/Urban_Driving_Simulator/.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流体:一阶轻量级城市交叉路口驾驶模拟器
为了促进城市驾驶的自动化,我们提出了一个高效、轻量级、开源的一阶模拟器,具有相关的图形显示和算法管理器。流体可以有效地模拟具有不同状态配置的交通路口,用于学习算法的训练和评估。fluid支持基于图像的鸟瞰状态空间和低维准激光雷达表示。此外,fluid还提供算法监控器,用于模拟环境中行人和汽车的真实行为。fluid以每分钟4000个状态-动作对的速度并行生成数据,并以每分钟20K个评估的速度并行评估一个模仿学习策略。通过实例,学习了一种基于模仿学习的避碰服从速度控制器。我们还通过报告学习模型对仿真参数的广泛敏感性分析来证明流体的灵活性。fluid 1.0可从https://berkeleyautomation.github.io/Urban_Driving_Simulator/获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1