Backstepping Based Grey Wolf and DPC for Power Quality Improvement and Active Power Injection in PV Grid-connected System Based on Interleaved Boost Converter
Oussama Mohamed Cherif Daia Eddine, A. Chebabhi, A. Kessal
{"title":"Backstepping Based Grey Wolf and DPC for Power Quality Improvement and Active Power Injection in PV Grid-connected System Based on Interleaved Boost Converter","authors":"Oussama Mohamed Cherif Daia Eddine, A. Chebabhi, A. Kessal","doi":"10.3311/ppee.21852","DOIUrl":null,"url":null,"abstract":"This research offers the backstepping based grey wolf control design for a multifunctional PV grid-connected system (MPGC) based on four phases interleaved boost converter. This work proposes a solution to the issues of harmonic mitigation, reactive power compensation, and PV-generated power injection into the grid-based MPGC. The interleaved boost converter (IBC), controlled using maximum power point tracking (MPPT), is utilized to harvest the photovoltaic (PV) system's peak power and overcome the conventional topology's drawbacks. Direct power control (DPC) based on space-vector pulse width modulation (SVPWM) is used to control the instantaneous power of the MPGC, and the backstepping control (BSC) is applied to the whole system to maintain the robustness and stability of the suggested method. The Grey Wolf Optimizer (GWO) optimized the system's dynamic response by adjusting the BSC parameters. The results were obtained using MATLAB/Simulink software. The suggested work shows excellent performance based on the obtained results, achieving the sinusoidal waveform of the currents and a unity power factor. Total harmonic distortion (THD) has been decreased below 5% in accordance with IEEE 519-2014 standard.","PeriodicalId":37664,"journal":{"name":"Periodica polytechnica Electrical engineering and computer science","volume":"93 1","pages":"268-280"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Periodica polytechnica Electrical engineering and computer science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3311/ppee.21852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
This research offers the backstepping based grey wolf control design for a multifunctional PV grid-connected system (MPGC) based on four phases interleaved boost converter. This work proposes a solution to the issues of harmonic mitigation, reactive power compensation, and PV-generated power injection into the grid-based MPGC. The interleaved boost converter (IBC), controlled using maximum power point tracking (MPPT), is utilized to harvest the photovoltaic (PV) system's peak power and overcome the conventional topology's drawbacks. Direct power control (DPC) based on space-vector pulse width modulation (SVPWM) is used to control the instantaneous power of the MPGC, and the backstepping control (BSC) is applied to the whole system to maintain the robustness and stability of the suggested method. The Grey Wolf Optimizer (GWO) optimized the system's dynamic response by adjusting the BSC parameters. The results were obtained using MATLAB/Simulink software. The suggested work shows excellent performance based on the obtained results, achieving the sinusoidal waveform of the currents and a unity power factor. Total harmonic distortion (THD) has been decreased below 5% in accordance with IEEE 519-2014 standard.
期刊介绍:
The main scope of the journal is to publish original research articles in the wide field of electrical engineering and informatics fitting into one of the following five Sections of the Journal: (i) Communication systems, networks and technology, (ii) Computer science and information theory, (iii) Control, signal processing and signal analysis, medical applications, (iv) Components, Microelectronics and Material Sciences, (v) Power engineering and mechatronics, (vi) Mobile Software, Internet of Things and Wearable Devices, (vii) Solid-state lighting and (viii) Vehicular Technology (land, airborne, and maritime mobile services; automotive, radar systems; antennas and radio wave propagation).