Corie L. Charpentier, Christopher S. Angell, Patrick I. Duffy, Jonathan H. Cohen
{"title":"Natural variations in estuarine fish, fish odor, and zooplankton photobehavior","authors":"Corie L. Charpentier, Christopher S. Angell, Patrick I. Duffy, Jonathan H. Cohen","doi":"10.1080/10236244.2020.1713701","DOIUrl":null,"url":null,"abstract":"ABSTRACT Fish odor induces predator avoidance behaviors in zooplankton, like vertical migration, by making zooplankton more responsive to light. Odor cues that alter behavior in marine crustacean zooplankton in the laboratory include sulfated glycosaminoglycans (sGAGs) derived from fish body mucus. Few studies quantify these cues in estuarine/marine environments or assess whether laboratory studies reflect natural scenarios. We collected fish and water samples weekly in Broadkill River, Delaware, USA. We used field-collected water in colorimetric assays to determine the concentration of sGAG-equivalent molecules and in behavioral assays with a zooplankton model, brine shrimp (Artemia spp.) nauplii, which only descend in response to downwelling light after fish odor exposure. Fish quantity was positively related to sGAG-equivalents and zooplankton photosensitivity, indicated by descent responses at lower light levels and across a broad intensity range. Our results support that fish odor concentrations used in previous laboratory assays are consistent with levels found in an estuary.","PeriodicalId":18210,"journal":{"name":"Marine and Freshwater Behaviour and Physiology","volume":"52 1","pages":"265 - 282"},"PeriodicalIF":0.9000,"publicationDate":"2019-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine and Freshwater Behaviour and Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10236244.2020.1713701","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT Fish odor induces predator avoidance behaviors in zooplankton, like vertical migration, by making zooplankton more responsive to light. Odor cues that alter behavior in marine crustacean zooplankton in the laboratory include sulfated glycosaminoglycans (sGAGs) derived from fish body mucus. Few studies quantify these cues in estuarine/marine environments or assess whether laboratory studies reflect natural scenarios. We collected fish and water samples weekly in Broadkill River, Delaware, USA. We used field-collected water in colorimetric assays to determine the concentration of sGAG-equivalent molecules and in behavioral assays with a zooplankton model, brine shrimp (Artemia spp.) nauplii, which only descend in response to downwelling light after fish odor exposure. Fish quantity was positively related to sGAG-equivalents and zooplankton photosensitivity, indicated by descent responses at lower light levels and across a broad intensity range. Our results support that fish odor concentrations used in previous laboratory assays are consistent with levels found in an estuary.
期刊介绍:
Marine and Freshwater Behaviour and Physiology is devoted to the publication of papers covering field and laboratory research into all aspects of the behaviour and physiology of all marine and freshwater animals within the contexts of ecology, evolution and conservation.
As the living resources of the world’s oceans, rivers and lakes are attracting increasing attention as food sources for humans and for their role in global ecology, the journal will also publish the results of research in the areas of fisheries biology and technology where the behaviour and physiology described have clear links to the contexts mentioned above.
The journal will accept for publication Research Articles, Reviews, Rapid Communications and Technical Notes (see Instructions for authors for details). In addition, Editorials, Opinions and Book Reviews (invited and suggested) will also occasionally be published. Suggestions to the Editor-In-Chief for Special Issues are encouraged and will be considered on an ad hoc basis.
With the goal of supporting early career researchers, the journal particularly invites submissions from graduate students and post-doctoral researchers. In addition to recognising the time constraints and logistical limitations their research often faces, and their particular need for a prompt review process, accepted articles by such researchers will be given prominence within the journal (see Instructions for authors for details).