Structural, morphological and photoluminescent properties of annealed ZnO thin layers obtained by the rapid sol-gel spin-coating method

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Opto-Electronics Review Pub Date : 2023-04-01 DOI:10.24425/opelre.2020.134460
M. Sypniewska, R. Szczęsny, P. Popielarski, K. Strzałkowski, B. Derkowska-Zielinska
{"title":"Structural, morphological and photoluminescent properties of annealed ZnO thin layers obtained by the rapid sol-gel spin-coating method","authors":"M. Sypniewska, R. Szczęsny, P. Popielarski, K. Strzałkowski, B. Derkowska-Zielinska","doi":"10.24425/opelre.2020.134460","DOIUrl":null,"url":null,"abstract":"Article history: Received 02 Jun. 2020 Received in revised form 27 Aug. 2020 Accepted 31 Aug. 2020 ZnO thin layers were deposited on p-type silicon substrates by the sol-gel spin-coating method and, then, annealed at various temperatures in the range of 573–873 K. Photoluminescence was carried out in the temperature range of 20–300 K. All samples showed two dominant peaks that have UV emissions from 300 nm to 400 nm and visible emissions from 400 nm to 800 nm. Influence of temperature on morphology and chemical composition of fabricated thin layers was examined by XRD, SEM, FTIR, and Raman spectroscopy. These measurements indicate that ZnO structure is obtained for samples annealed at temperatures above 573 K. It means that below this temperature, the obtained thin films are not pure zinc oxide. Thus, annealing temperature significantly affected crystallinity of the thin films.","PeriodicalId":54670,"journal":{"name":"Opto-Electronics Review","volume":"11 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opto-Electronics Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/opelre.2020.134460","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 9

Abstract

Article history: Received 02 Jun. 2020 Received in revised form 27 Aug. 2020 Accepted 31 Aug. 2020 ZnO thin layers were deposited on p-type silicon substrates by the sol-gel spin-coating method and, then, annealed at various temperatures in the range of 573–873 K. Photoluminescence was carried out in the temperature range of 20–300 K. All samples showed two dominant peaks that have UV emissions from 300 nm to 400 nm and visible emissions from 400 nm to 800 nm. Influence of temperature on morphology and chemical composition of fabricated thin layers was examined by XRD, SEM, FTIR, and Raman spectroscopy. These measurements indicate that ZnO structure is obtained for samples annealed at temperatures above 573 K. It means that below this temperature, the obtained thin films are not pure zinc oxide. Thus, annealing temperature significantly affected crystallinity of the thin films.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
快速溶胶-凝胶自旋镀膜法制备的退火ZnO薄层的结构、形态和光致发光性能
采用溶胶-凝胶自旋镀膜法在p型硅衬底上沉积ZnO薄层,然后在573-873 K的不同温度下退火。在20 ~ 300 K的温度范围内进行光致发光。所有样品均有两个主导峰,紫外辐射范围为300 ~ 400 nm,可见光辐射范围为400 ~ 800 nm。采用XRD、SEM、FTIR和拉曼光谱分析了温度对制备薄层形貌和化学成分的影响。这些测量结果表明,在573 K以上退火的样品中获得了ZnO结构。这意味着在这个温度以下,得到的薄膜不是纯的氧化锌。因此,退火温度显著影响薄膜的结晶度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Opto-Electronics Review
Opto-Electronics Review 工程技术-工程:电子与电气
CiteScore
1.90
自引率
12.50%
发文量
0
审稿时长
>12 weeks
期刊介绍: Opto-Electronics Review is peer-reviewed and quarterly published by the Polish Academy of Sciences (PAN) and the Association of Polish Electrical Engineers (SEP) in electronic version. It covers the whole field of theory, experimental techniques, and instrumentation and brings together, within one journal, contributions from a wide range of disciplines. The scope of the published papers includes any aspect of scientific, technological, technical and industrial works concerning generation, transmission, transformation, detection and application of light and other forms of radiative energy whose quantum unit is photon. Papers covering novel topics extending the frontiers in optoelectronics or photonics are very encouraged. It has been established for the publication of high quality original papers from the following fields: Optical Design and Applications, Image Processing Metamaterials, Optoelectronic Materials, Micro-Opto-Electro-Mechanical Systems, Infrared Physics and Technology, Modelling of Optoelectronic Devices, Semiconductor Lasers Technology and Fabrication of Optoelectronic Devices, Photonic Crystals, Laser Physics, Technology and Applications, Optical Sensors and Applications, Photovoltaics, Biomedical Optics and Photonics
期刊最新文献
Vibration sensing with the optical fibre Mach-Zehnder interferometer 148833 Rigorous optical modelling of long-wavelength infrared photodetector with 2D subwavelength hole array in gold film 148697 148441
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1