{"title":"A logistic optimization for the vehicle routing problem through a case study in the food industry","authors":"M. E. Akpinar","doi":"10.17270/j.log.2021.604","DOIUrl":null,"url":null,"abstract":". Background: In this study, the food delivery problem faced by a food company is discussed. There are seven different regions where the company serves food and a certain number of customers in each region. The time of requesting food for each customer varies according to the shift situation. This type of problem is referred to as a vehicle routing problem with time windows in the literature and the main aim of the study is to minimize the total travel distance of the vehicles. The second aim is to determine which vehicle will follow which route in the region by using the least amount of vehicle according to the desired mealtime. Methods: In this study, genetic algorithm methodology is used for the solution of the problem. Metaheuristic algorithms are used for problems that contain multiple combinations and cannot be solved in a reasonable time. Thus in this study, a solution to this problem in a reasonable time is obtained by using the genetic algorithm method. The advantage of this method is to find the most appropriate solution by trying possible solutions with a certain number of populations. Results : Different population sizes are considered in the study. 1000 iterations are made for each population. According to the genetic algorithm results, the best result is obtained in the lowest population size. The total distance has been shortened by about 14% with this method. Besides, the number of vehicles in each region and which vehicle will serve to whom has also been determined. This study, which is a real-life application, has provided serious profitability to the food company even from this region alone. Besides, there have been improvements at different rates in each of the seven regions. Customers' ability to receive service at any time has maximized customer satisfaction and increased the ability to work in the long term. Conclusions: The method and results used in the study were positive for the food company. However, the metaheuristic algorithm used in this study does not guarantee an optimal result. Therefore, mathematical models or simulation models can be considered in terms of future studies. Besides, in addition to the time windows problem, the pickup problem can also be taken into account and different solution proposals can be developed.","PeriodicalId":44682,"journal":{"name":"LogForum","volume":"31 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LogForum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17270/j.log.2021.604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MANAGEMENT","Score":null,"Total":0}
引用次数: 3
Abstract
. Background: In this study, the food delivery problem faced by a food company is discussed. There are seven different regions where the company serves food and a certain number of customers in each region. The time of requesting food for each customer varies according to the shift situation. This type of problem is referred to as a vehicle routing problem with time windows in the literature and the main aim of the study is to minimize the total travel distance of the vehicles. The second aim is to determine which vehicle will follow which route in the region by using the least amount of vehicle according to the desired mealtime. Methods: In this study, genetic algorithm methodology is used for the solution of the problem. Metaheuristic algorithms are used for problems that contain multiple combinations and cannot be solved in a reasonable time. Thus in this study, a solution to this problem in a reasonable time is obtained by using the genetic algorithm method. The advantage of this method is to find the most appropriate solution by trying possible solutions with a certain number of populations. Results : Different population sizes are considered in the study. 1000 iterations are made for each population. According to the genetic algorithm results, the best result is obtained in the lowest population size. The total distance has been shortened by about 14% with this method. Besides, the number of vehicles in each region and which vehicle will serve to whom has also been determined. This study, which is a real-life application, has provided serious profitability to the food company even from this region alone. Besides, there have been improvements at different rates in each of the seven regions. Customers' ability to receive service at any time has maximized customer satisfaction and increased the ability to work in the long term. Conclusions: The method and results used in the study were positive for the food company. However, the metaheuristic algorithm used in this study does not guarantee an optimal result. Therefore, mathematical models or simulation models can be considered in terms of future studies. Besides, in addition to the time windows problem, the pickup problem can also be taken into account and different solution proposals can be developed.