{"title":"A new algorithm for computing visibility graphs of polygonal obstacles in the plane","authors":"D. Chen, Haitao Wang","doi":"10.20382/jocg.v6i1a14","DOIUrl":null,"url":null,"abstract":"Given a set of $h$ pairwise disjoint polygonal obstacles with a total of $n$ vertices in the plane, the vertex-vertex visibility graph is an undirected graph whose nodes are vertices of the obstacles and whose edges are pairs of visible vertices. The vertex-edge and edge-edge visibility graphs are defined similarly. Ghosh and Mount gave a well-known output-sensitive $O(n\\log n+k)$ time algorithm for computing these visibility graphs, where $k$ is the size of the corresponding graph. By developing new techniques based on an extended corridor structure, we augment Ghosh and Mount’s algorithm to build these visibility graphs in $O(n+h\\log h+k)$ time, after the free space is triangulated. The new algorithm improves Ghosh and Mount’s algorithm by reducing its additive $O(n\\log n)$ time factor to $O(n + h\\log h)$. Like Ghosh and Mount’s algorithm, our algorithm can also compute several important structures such as the funnel structure and the enhanced visibility graph, which may have other applications.","PeriodicalId":54969,"journal":{"name":"International Journal of Computational Geometry & Applications","volume":"19 1","pages":"316-345"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Geometry & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v6i1a14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10
Abstract
Given a set of $h$ pairwise disjoint polygonal obstacles with a total of $n$ vertices in the plane, the vertex-vertex visibility graph is an undirected graph whose nodes are vertices of the obstacles and whose edges are pairs of visible vertices. The vertex-edge and edge-edge visibility graphs are defined similarly. Ghosh and Mount gave a well-known output-sensitive $O(n\log n+k)$ time algorithm for computing these visibility graphs, where $k$ is the size of the corresponding graph. By developing new techniques based on an extended corridor structure, we augment Ghosh and Mount’s algorithm to build these visibility graphs in $O(n+h\log h+k)$ time, after the free space is triangulated. The new algorithm improves Ghosh and Mount’s algorithm by reducing its additive $O(n\log n)$ time factor to $O(n + h\log h)$. Like Ghosh and Mount’s algorithm, our algorithm can also compute several important structures such as the funnel structure and the enhanced visibility graph, which may have other applications.
期刊介绍:
The International Journal of Computational Geometry & Applications (IJCGA) is a quarterly journal devoted to the field of computational geometry within the framework of design and analysis of algorithms.
Emphasis is placed on the computational aspects of geometric problems that arise in various fields of science and engineering including computer-aided geometry design (CAGD), computer graphics, constructive solid geometry (CSG), operations research, pattern recognition, robotics, solid modelling, VLSI routing/layout, and others. Research contributions ranging from theoretical results in algorithm design — sequential or parallel, probabilistic or randomized algorithms — to applications in the above-mentioned areas are welcome. Research findings or experiences in the implementations of geometric algorithms, such as numerical stability, and papers with a geometric flavour related to algorithms or the application areas of computational geometry are also welcome.