Automatic Decision Making for Parameters in Kernel Method

Yan Pei
{"title":"Automatic Decision Making for Parameters in Kernel Method","authors":"Yan Pei","doi":"10.1109/SSCI44817.2019.9002691","DOIUrl":null,"url":null,"abstract":"We propose to use the relationship between the parameter of kernel function and its decisional angle or distance metrics for selecting the optimal setting of the parameter of kernel functions in kernel method-based algorithms. Kernel method is established in the reproducing kernel Hilbert space, the angle and distance are two metrics in such space. We analyse and investigate the relationship between the parameter of kernel function and the metrics (distance or angle) in the reproducing kernel Hilbert space. We design a target function of optimization to model the relationship between these two variables, and found that (1) the landscape shapes of parameter and the metrics are the same in Gaussian kernel function because the norm of all the vectors are equal to one in reproducing kernel Hilbert space; (2) the landscape monotonicity of that are opposite in polynomial kernel function from that of Gaussian kernel. The monotonicity of designed target functions of optimization using Gaussian kernel and polynomial kernel is different as well. The distance metric and angle metric have different distribution characteristics for the decision of parameter setting in kernel function. It needs to balance these two metrics when selecting a proper parameter of the kernel function in kernel-based algorithms. We use evolutionary multi-objective optimization algorithms to obtain the Pareto solutions for optimal selection of the parameter in kernel functions. We found that evolutionary multi-objective optimization algorithms are useful tools to balance the distance metric and angle metric in the decision of parameter setting in kernel method-based algorithms.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"32 1","pages":"3207-3214"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9002691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose to use the relationship between the parameter of kernel function and its decisional angle or distance metrics for selecting the optimal setting of the parameter of kernel functions in kernel method-based algorithms. Kernel method is established in the reproducing kernel Hilbert space, the angle and distance are two metrics in such space. We analyse and investigate the relationship between the parameter of kernel function and the metrics (distance or angle) in the reproducing kernel Hilbert space. We design a target function of optimization to model the relationship between these two variables, and found that (1) the landscape shapes of parameter and the metrics are the same in Gaussian kernel function because the norm of all the vectors are equal to one in reproducing kernel Hilbert space; (2) the landscape monotonicity of that are opposite in polynomial kernel function from that of Gaussian kernel. The monotonicity of designed target functions of optimization using Gaussian kernel and polynomial kernel is different as well. The distance metric and angle metric have different distribution characteristics for the decision of parameter setting in kernel function. It needs to balance these two metrics when selecting a proper parameter of the kernel function in kernel-based algorithms. We use evolutionary multi-objective optimization algorithms to obtain the Pareto solutions for optimal selection of the parameter in kernel functions. We found that evolutionary multi-objective optimization algorithms are useful tools to balance the distance metric and angle metric in the decision of parameter setting in kernel method-based algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核方法参数的自动决策
在基于核方法的算法中,我们提出利用核函数参数与其决策角度或距离度量之间的关系来选择核函数参数的最优设置。在再现核希尔伯特空间中建立了核方法,在该空间中角和距离是两个度量。我们分析和研究了再现核希尔伯特空间中核函数参数与度量(距离或角度)之间的关系。我们设计了一个优化目标函数来模拟这两个变量之间的关系,发现(1)在高斯核函数中参数和度量的景观形状是相同的,因为在再现核希尔伯特空间中所有向量的范数都等于1;(2)多项式核函数的横向单调性与高斯核函数相反。采用高斯核和多项式核进行优化设计的目标函数的单调性也不同。距离度量和角度度量在核函数参数设置决策中具有不同的分布特征。在基于核的算法中,在选择合适的核函数参数时,需要平衡这两个指标。利用进化多目标优化算法得到核函数参数最优选择的Pareto解。研究发现,进化多目标优化算法是平衡基于核方法的参数设置决策中距离度量和角度度量的有效工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1