{"title":"Estimating Soil Carbon Stocks in a Dry Miombo Ecosystem Using Remote Sensing","authors":"Richard Muchena","doi":"10.4172/2168-9776.1000198","DOIUrl":null,"url":null,"abstract":"The total carbon pool in dry Miombo ecosystems is often underestimated. This study sought to close this gap by modelling the relationship between the above ground fresh woody biomass carbon pool and the soil carbon pool using both ground based methods and remote sensing methods. A total of thirty (30 m × 30 m) plots were randomly selected within the study area. Tree height and diameter at breast height (dbh) are the vegetation characteristics, which were measured in the present study. These variables were later used to calculate the above ground fresh biomass carbon per hectare. Soil samples were randomly collected from five points within the plots. The soil samples were analyzed for soil organic carbon (SOC). Three remotely sensed vegetation indices are-Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and the Soil Adjusted Vegetation Index (SAVI), which were calculated using geometrically and radiometrically corrected Landsat 8 Operational Land Imager (OLI) satellite images. Correlation and regression analysis were used to quantify the relationship between SOC, above ground fresh woody biomass carbon and remotely sensed vegetation indices. Results showed that, above ground fresh woody biomass carbon was significantly related to SOC in the top soil layer (0-15 cm) and not the deeper soil layer (15-30 cm). The significant positive relationship between above ground fresh woody biomass carbon and SOC suggests that, above ground fresh woody biomass carbon can be used as a proxy to estimate SOC in the top soil layer (0-15 cm) in dry Miombo ecosystems. Remotely sensed vegetation indices were not significantly (p>0.05) related to the SOC regardless of depth. This result implies that further work is needed before multi-spectral optical remote sensing can be used as a tool to estimate SOC in dry Miombo ecosystems.","PeriodicalId":35920,"journal":{"name":"林业科学研究","volume":"33 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"林业科学研究","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4172/2168-9776.1000198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 6
Abstract
The total carbon pool in dry Miombo ecosystems is often underestimated. This study sought to close this gap by modelling the relationship between the above ground fresh woody biomass carbon pool and the soil carbon pool using both ground based methods and remote sensing methods. A total of thirty (30 m × 30 m) plots were randomly selected within the study area. Tree height and diameter at breast height (dbh) are the vegetation characteristics, which were measured in the present study. These variables were later used to calculate the above ground fresh biomass carbon per hectare. Soil samples were randomly collected from five points within the plots. The soil samples were analyzed for soil organic carbon (SOC). Three remotely sensed vegetation indices are-Ratio Vegetation Index (RVI), Normalized Difference Vegetation Index (NDVI), and the Soil Adjusted Vegetation Index (SAVI), which were calculated using geometrically and radiometrically corrected Landsat 8 Operational Land Imager (OLI) satellite images. Correlation and regression analysis were used to quantify the relationship between SOC, above ground fresh woody biomass carbon and remotely sensed vegetation indices. Results showed that, above ground fresh woody biomass carbon was significantly related to SOC in the top soil layer (0-15 cm) and not the deeper soil layer (15-30 cm). The significant positive relationship between above ground fresh woody biomass carbon and SOC suggests that, above ground fresh woody biomass carbon can be used as a proxy to estimate SOC in the top soil layer (0-15 cm) in dry Miombo ecosystems. Remotely sensed vegetation indices were not significantly (p>0.05) related to the SOC regardless of depth. This result implies that further work is needed before multi-spectral optical remote sensing can be used as a tool to estimate SOC in dry Miombo ecosystems.
期刊介绍:
Forestry Research is a comprehensive academic journal of forestry science organized by the Chinese Academy of Forestry. The main task is to reflect the latest research results, academic papers and research reports, scientific and technological developments and information on forestry science mainly organized by the Chinese Academy of Forestry, to promote academic exchanges at home and abroad, to carry out academic discussions, to flourish forestry science, and to better serve China's forestry construction.
The main contents are: forest seeds, seedling afforestation, forest plants, forest genetic breeding, tree physiology and biochemistry, forest insects, resource insects, forest pathology, forest microorganisms, forest birds and animals, forest soil, forest ecology, forest management, forest manager, forestry remote sensing, forestry biotechnology and other new technologies, new methods, and to increase the development strategy of forestry, the trend of development of disciplines, technology policies and strategies, etc., and to increase the forestry development strategy, the trend of development of disciplines, technology policies and strategies. It is suitable for scientists and technicians of forestry and related disciplines, teachers and students of colleges and universities, leaders and managers, and grassroots forestry workers.