Spatio-temporal and events based analysis of topic popularity in twitter

S. Ardon, A. Bagchi, A. Mahanti, Amit Ruhela, Aaditeshwar Seth, R. M. Tripathy, Sipat Triukose
{"title":"Spatio-temporal and events based analysis of topic popularity in twitter","authors":"S. Ardon, A. Bagchi, A. Mahanti, Amit Ruhela, Aaditeshwar Seth, R. M. Tripathy, Sipat Triukose","doi":"10.1145/2505515.2505525","DOIUrl":null,"url":null,"abstract":"We present the first comprehensive characterization of the diffusion of ideas on Twitter, studying more than 5.96 million topics that include both popular and less popular topics. On a data set containing approximately 10 million users and a comprehensive scraping of 196 million tweets, we perform a rigorous temporal and spatial analysis, investigating the time-evolving properties of the subgraphs formed by the users discussing each topic. We focus on two different notions of the spatial: the network topology formed by follower-following links on Twitter, and the geospatial location of the users. We investigate the effect of initiators on the popularity of topics and find that users with a high number of followers have a strong impact on topic popularity. We deduce that topics become popular when disjoint clusters of users discussing them begin to merge and form one giant component that grows to cover a significant fraction of the network. Our geospatial analysis shows that highly popular topics are those that cross regional boundaries aggressively.","PeriodicalId":20528,"journal":{"name":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM international conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2505515.2505525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 63

Abstract

We present the first comprehensive characterization of the diffusion of ideas on Twitter, studying more than 5.96 million topics that include both popular and less popular topics. On a data set containing approximately 10 million users and a comprehensive scraping of 196 million tweets, we perform a rigorous temporal and spatial analysis, investigating the time-evolving properties of the subgraphs formed by the users discussing each topic. We focus on two different notions of the spatial: the network topology formed by follower-following links on Twitter, and the geospatial location of the users. We investigate the effect of initiators on the popularity of topics and find that users with a high number of followers have a strong impact on topic popularity. We deduce that topics become popular when disjoint clusters of users discussing them begin to merge and form one giant component that grows to cover a significant fraction of the network. Our geospatial analysis shows that highly popular topics are those that cross regional boundaries aggressively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空和事件的twitter话题流行度分析
我们首次对Twitter上的思想传播进行了全面表征,研究了超过596万个话题,其中包括热门话题和不太热门的话题。在包含大约1000万用户和1.96亿条推文的数据集上,我们执行了严格的时间和空间分析,调查了由讨论每个主题的用户形成的子图的时间演变属性。我们关注两种不同的空间概念:由Twitter上的关注者-关注者链接形成的网络拓扑,以及用户的地理空间位置。我们研究了发起者对话题受欢迎程度的影响,发现拥有大量关注者的用户对话题受欢迎程度有很强的影响。我们推断,当讨论话题的不相关的用户群开始合并并形成一个巨大的组成部分,并逐渐覆盖网络的很大一部分时,话题就会变得流行起来。我们的地理空间分析表明,最受欢迎的话题是那些积极跨越区域边界的话题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exploring XML data is as easy as using maps Mining-based compression approach of propositional formulae Flexible and dynamic compromises for effective recommendations Efficient parsing-based search over structured data Recommendation via user's personality and social contextual
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1