{"title":"Revisiting the K-nn algorithm for obstetric image segmentation","authors":"P. Salgado, T. Azevedo-Perdicoúlis","doi":"10.3233/HIS-210001","DOIUrl":null,"url":null,"abstract":"Medical image techniques are used to examine and determine the well-being of the foetus during pregnancy. Digital image processing (DIP) is essential to extract valuable information embedded in most biomedical signals. Afterwords, intelligent segmentation methods, based on classifier algorithms, must be applied to identify structures and relevant features from previous data. The success of both is essential for helping doctors to identify adverse health conditions from the medical images. To obtain easy and reliable DIP methods for foetus images in real-time, at different gestational ages, aware pre-processing needs to be applied to the images. Thence, some data features are extracted that are meant to be used as input to the segmentation algorithms presented in this work. Due to the high dimension of the problems in question, assemblage of the data is also desired. The segmentation of the images is done by revisiting the K-nn algorithm that is a conventional nonparametric classifier. Besides its simplicity, its power to accomplish high classification results in medical applications has been demonstrated. In this work two versions of this algorithm are presented (i) an enhancement of the standard version by aggregating the data apriori and (ii) an iterative version of the same method where the training set (TS) is not static. The procedure is demonstrated in two experiments, where two images of different technologies were selected: a magnetic resonance image and an ultrasound image, respectively. The results were assessed by comparison with the K-means clustering algorithm, a well-known and robust method for this type of task. Both described versions showed results close to 100% matching with the ones obtained by the validation method, although the iterative version displays much higher reliability in the classification.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":"12 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/HIS-210001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Medical image techniques are used to examine and determine the well-being of the foetus during pregnancy. Digital image processing (DIP) is essential to extract valuable information embedded in most biomedical signals. Afterwords, intelligent segmentation methods, based on classifier algorithms, must be applied to identify structures and relevant features from previous data. The success of both is essential for helping doctors to identify adverse health conditions from the medical images. To obtain easy and reliable DIP methods for foetus images in real-time, at different gestational ages, aware pre-processing needs to be applied to the images. Thence, some data features are extracted that are meant to be used as input to the segmentation algorithms presented in this work. Due to the high dimension of the problems in question, assemblage of the data is also desired. The segmentation of the images is done by revisiting the K-nn algorithm that is a conventional nonparametric classifier. Besides its simplicity, its power to accomplish high classification results in medical applications has been demonstrated. In this work two versions of this algorithm are presented (i) an enhancement of the standard version by aggregating the data apriori and (ii) an iterative version of the same method where the training set (TS) is not static. The procedure is demonstrated in two experiments, where two images of different technologies were selected: a magnetic resonance image and an ultrasound image, respectively. The results were assessed by comparison with the K-means clustering algorithm, a well-known and robust method for this type of task. Both described versions showed results close to 100% matching with the ones obtained by the validation method, although the iterative version displays much higher reliability in the classification.