On ICA Based ICTD Classification of Polsar Data

Gabriel Vasile
{"title":"On ICA Based ICTD Classification of Polsar Data","authors":"Gabriel Vasile","doi":"10.1109/IGARSS.2019.8900558","DOIUrl":null,"url":null,"abstract":"The Independent Component Analysis (ICA) has been recently introduced as a reliable alternative to identify canonical scattering mechanisms within PolSAR images. This paper addresses an important aspect for applying such methods on real data, namely statistical classification with ICA. A novel algorithm is proposed by adjusting the iterative segmentation from [1], [2] to the particular nature of the Touzi’s polarimetric decomposition [3]. This algorithm is tested using P-band airborne PolSAR data acquired for the ESA campaign TropiSAR campaign.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"8 1","pages":"5129-5132"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8900558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Independent Component Analysis (ICA) has been recently introduced as a reliable alternative to identify canonical scattering mechanisms within PolSAR images. This paper addresses an important aspect for applying such methods on real data, namely statistical classification with ICA. A novel algorithm is proposed by adjusting the iterative segmentation from [1], [2] to the particular nature of the Touzi’s polarimetric decomposition [3]. This algorithm is tested using P-band airborne PolSAR data acquired for the ESA campaign TropiSAR campaign.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ICA的极地卫星数据ICTD分类研究
独立分量分析(ICA)最近被引入,作为一种可靠的替代方法来识别PolSAR图像中的典型散射机制。本文讨论了将这些方法应用于实际数据的一个重要方面,即ICA的统计分类。本文提出了一种新的算法,通过调整迭代分割[1],[2]来适应Touzi极化分解的特殊性[3]。利用欧空局TropiSAR战役中获得的p波段机载PolSAR数据对该算法进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1