On learning control knowledge for a HTN-POP hybrid planner

S. Fernández, R. Aler, D. Borrajo
{"title":"On learning control knowledge for a HTN-POP hybrid planner","authors":"S. Fernández, R. Aler, D. Borrajo","doi":"10.1109/ICMLC.2002.1175368","DOIUrl":null,"url":null,"abstract":"In this paper we present a learning method that is able to automatically acquire control knowledge for a hybrid HTN-POP planner called HYBIS. HYBIS decomposes a problem in subproblems using either a default method or a user-defined decomposition method. Then, at each level of abstraction, it generates a plan at that level using a POCL (Partial Order Causal Link) planning technique. Our learning approach builds on HAMLET, a system that learns control knowledge for a total order non-linear planner (PRODIGY4.0). In this paper, we focus on the operator selection problem for the POP component of HYBIS, which is very important for efficiency purposes.","PeriodicalId":90702,"journal":{"name":"Proceedings. International Conference on Machine Learning and Cybernetics","volume":"94 1","pages":"1899-1904 vol.4"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2002.1175368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present a learning method that is able to automatically acquire control knowledge for a hybrid HTN-POP planner called HYBIS. HYBIS decomposes a problem in subproblems using either a default method or a user-defined decomposition method. Then, at each level of abstraction, it generates a plan at that level using a POCL (Partial Order Causal Link) planning technique. Our learning approach builds on HAMLET, a system that learns control knowledge for a total order non-linear planner (PRODIGY4.0). In this paper, we focus on the operator selection problem for the POP component of HYBIS, which is very important for efficiency purposes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HTN-POP混合规划器控制知识的学习
本文提出了一种能够自动获取HTN-POP混合型规划器控制知识的学习方法HYBIS。HYBIS使用默认方法或用户定义的分解方法将问题分解为子问题。然后,在每个抽象级别上,它使用POCL(偏序因果链接)计划技术生成该级别的计划。我们的学习方法建立在HAMLET的基础上,HAMLET是一个为全阶非线性规划器(PRODIGY4.0)学习控制知识的系统。本文重点研究了HYBIS的POP组件的操作人员选择问题,这对提高系统的效率至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plenary Talk: Digital-Twin Fluid Engineering APPLYING MACHINE LEARNING TECHNIQUES IN DETECTING BACTERIAL VAGINOSIS. OPTICAL COHERENCE TOMOGRAPHY HEART TUBE IMAGE DENOISING BASED ON CONTOURLET TRANSFORM. The multistage support vector machine Anti-control of chaos based on fuzzy neural networks inverse system method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1